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Abstract—Sparse matrices are an integral part of scientific
simulations. As hardware evolves new sparse matrix storage
formats are proposed aiming to exploit optimizations specific to
the new hardware. In the era of heterogeneous computing, users
often are required to use multiple formats for their applications to
remain optimal across the different available hardware, resulting
in larger development times and maintenance overhead. A
potential solution to this problem is the use of a lightweight
auto-tuner driven by Machine Learning (ML) that would select
for the user an optimal format from a pool of available formats
that will match the characteristics of the sparsity pattern, target
hardware and operation to execute.

In this paper, we introduce Morpheus-Oracle, a library that
provides a lightweight ML auto-tuner capable of accurately
predicting the optimal format across multiple backends, targeting
the major HPC architectures aiming to eliminate any format
selection input by the end-user. From more than 2000 real-
life matrices, we achieve an average classification accuracy and
balanced accuracy of 92.63% and 80.22% respectively across
the available systems. The adoption of the auto-tuner results in
average speedup of 1.1× on CPUs and 1.5× to 8× on NVIDIA
and AMD GPUs, with maximum speedups reaching up to 7×
and 1000× respectively.

Index Terms—sparse matrix storage formats, machine learn-
ing, automatic format selection

I. INTRODUCTION

Sparse matrices, since their inception, have become a crucial
component of many scientific simulations in computational
science and engineering [1]–[3]. Over the years, more than
70 representations of sparse matrices (sparse matrix storage
formats) have been developed, each addressing the different
types of matrices and/or the evolution of hardware towards
multi- and many-core processors and accelerators [4]. Litera-
ture shows that different formats yield different performance
profiles with no single format performing optimally across all
different kinds of matrices and types of hardware [5]–[10].

Exploiting the properties of each format and adjusting the
underlying data structure of the sparse matrix (instead of
adopting a single storage format) to better fit the operation and
target hardware provides optimization opportunities that will
potentially improve the performance of the operation. Since
the matrix is generally unknown during compile-time, this
exploitation can only be done at runtime. Previous efforts [11]–
[14] provide abstractions and mechanisms that effectively
allow for runtime switching to the different formats that are
supported.

Even though it is crucial to enable some dynamic switching
mechanism to be able to change formats at runtime, it is also
important to automate the process of selecting the optimal
format. To facilitate the selection of the optimal format for
a given matrix, target architecture and operation, auto-tuners
have been developed (such as [9], [13], [15], [16]) with a focus
on selecting the optimal format for the Sparse Matrix-Vector
Multiplication (SpMV), the operation that often dominates
the runtime of computing the solution to linear systems.
These contributions demonstrated the impact of optimizing
the performance of iterative solvers through automatic format
selection on single node multi- and many-core systems.

In this work, we develop an auto-tuning system that is
capable of efficiently tuning the performance of the SpMV
kernel on a wide range of state-of-the-art systems across
different vendors using ML whilst remaining architecture ag-
nostic. The auto-tuning system offers multiple ML algorithms
each with different costs and selection accuracy. We introduce
Morpheus-Oracle (Oracle) [17], a library that supports au-
tomatic format selection by implementing the different auto-
tuners as well as the feature extraction routines. A detailed
description of Oracle is given in Section VI.

In summary, our contributions are:
• We show the distribution of optimal formats for the

SpMV operation over 6 different matrix storage formats
across a variety of systems and target hardware, including
multi- and many-core processors and accelerators, for
more than 2000 matrices.

• For the same set of matrices and systems, we quantify
the improvement in performance achieved by choosing
the optimal format compared to Compressed Sparse Row
(CSR), a commonly used general-purpose format. The
average runtime speedup is up to ∼ 2× on CPU backends
and up to ∼ 10× on GPU backends.

• We provide a reusable model generation system with
more than 2000 sparse matrices from real applications
that users can exploit to train their own models. In
addition we train and tune two different ML algorithms
and compare their performance in terms of their ability to
correctly select the optimal format and quantify the over-
heads introduced by introducing the auto-tuning mecha-
nism relatively to the runtime cost of SpMV iterations.

• We introduce a simple, flexible and extensible auto-
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tuning library complementing Morpheus, the library for
dynamic format switching, that provides tuners which
can confidently select the optimal format for a range of
architectures.

II. BACKGROUND AND MOTIVATION

A. Motivation

New storage formats are proposed every time new archi-
tectures emerge aiming to exploit optimizations specific to
the new hardware. In the era of heterogeneous computing
hardware has become more diverse and as a result applications
often require the use of multiple formats across the different
types of hardware in order to remain optimal. Even-though
new formats have been proposed ( [5], [6], [10] as an effort
to mitigate the performance portability issue there is still no
single format that would perform optimally across the different
sparsity pattern, hardware architectures and operations. As we
show in Section VII-C, even when a particular format performs
well in general, in some cases can severely under-perform
resulting in poor runtime performance. This is predominantly
noticeable on GPUs where the wrong format can leave the
device under-utilized or result in excessive memory requests
due to uncoalesced memory accesses. For applications to
achieve optimal performance therefore a better solution is to
select the optimal format from a pool of candidate formats at
runtime.

Experienced users may have a feeling about the choice of
the optimal format for the category or type of matrices they
frequently used, however a decision such as this one is not triv-
ial to make as it depends on a number of factors. Furthermore,
choosing the optimal format by running the available options
first can result in significant overheads. ML and Artificial
Intelligence (AI) have been successful in various optimization
tasks ranging from code optimization to model selection [18],
including the task of selecting the optimal sparse matrix
storage format [13], [16]. Adopting a ML model has the
potential to offer an accurate and low-overhead solution to
the problem of automatic format selection, eliminating any
requirement for manual format selection input from the user
enabling applications to remain optimal across the different
types of hardware and sparsity patterns for any operation of
interest.

B. Sparse Matrix Storage Formats

A plethora of sparse matrix storage formats have been
developed over the years, with new formats introduced every
time new architectures emerge [4]. Each format has different
storage requirements, computational characteristics and comes
with different interface for modifying and manipulating the
entries of the matrix [19]. Such characteristics make the
process of determining, in advance, which format will perform
best for a particular matrix given an operation and target
hardware non-trivial, with multiple factors contributing in such
a decision. In this paper, we consider six different storage
formats: 2 general purpose, 2 specific purpose and 2 hybrid
formats.

The most basic and well-known formats are Coordinate
(COO) and CSR. Both formats are considered general purpose
formats, and are suitable for a wide range of arbitrary sparsity
patterns and target architectures, with CSR usually adopted as
the format of choice. COO is constructed from three arrays,
where each non-zero element is stored with its pair of row
and column indices and no guarantees in the ordering of the
elements. Similarly, CSR also stores explicitly the non-zero
values and column indices, but compresses the row indices and
stores and array of pointers to mark the boundaries of each row
instead, effectively imposing a natural ordering across rows.

Specific purpose formats on the other hand aim to exploit the
characteristics of a specific class of matrices and are usually
designed to perform optimally on a particular architecture,
such as GPUs. For example, the Diagonal (DIA) format is
designed to represent regular sparsity patterns and is a good
fit for vector-like processors. DIA stores the non-zero elements
in a two-dimensional array, where each column holds the
coefficients of the diagonal of the matrix. In addition, it holds
an integer offset array that keeps track of where each diagonal
starts. Another example of interest is the ELLPACK (ELL)
format, which assumes that there are at most K non-zero
entries per row. As a result, it uses one two-dimensional array
to represent the non-zero elements of the matrix and another
one for the column indices of the values. Consequently,
the DIA format is suitable for representing structures that
dominate along the diagonals, such as banded matrices, and
ELL for matrices that are structured or semi-structured (i.e
have similar number of non-zeros per row). Note that both
formats can suffer from excessive padding if the number of
diagonals or the number of non-zeros per row is very large.

Hybrid formats usually aim to combine the strengths of two
formats in order to eliminate some of their weaknesses, such
as the excessive padding mentioned before. The first hybrid
format of interest is Hybrid (HYB), which is a combination
of ELL and COO. HYB uses a parameter KH that indicates
the number of non-zeros per row to be stored in the ELL
portion. For rows with number of non-zeros larger than KH ,
the surplus of non-zeros is stored in the COO portion instead.
The second hybrid format of interest is Hybrid DIA/CSR
(HDC). It uses a parameter ND that represents the number of
non-zeros in a diagonal above which the diagonal is considered
to be a “true” diagonal. The true diagonals in the matrix are
then stored in DIA format, whilst the remainder are stored as
CSR.

C. Morpheus

Morpheus [11] is a C++ library that supports the runtime
switching of sparse matrix storage formats through Dynam-
icMatrix, a single dynamic “abstract” format. Morpheus pro-
vides a transparent mechanism that can efficiently switch to
the different formats supported by the DynamicMatrix and it
currently supports the six formats mentioned in Section II-B.
In addition, Morpheus offers algorithms such as SpMV for
four different backends in order to support most of the key
HPC platforms: 1) Serial (Sequential), 2) OpenMP (Multi-



threaded), 3) CUDA (NVIDIA GPUs) and 4) HIP (AMD
GPUs). Furthermore, Morpheus provides data management
routines and enables data transfers across the different memory
spaces of the supported backends and adopts the host-device
model to support both homogeneous and heterogeneous plat-
forms (i.e platforms with CPU only or CPU+GPU hardware)
maintaining the same application source code.

By abstracting the different formats under a single dynamic
format, encapsulating the internal implementation details and
provide a single interface for algorithms across backends, users
are left with a simple and intuitive interface that abstracts
away the complexities. In this work, we build on top of
Morpheus’s runtime switching mechanism to enable automatic
format selection and completely eliminate the need for format
selection input from the user.

III. AUTO-TUNING PIPELINE HIGH LEVEL OVERVIEW

The focus of this work is to develop an auto-tuner for
selecting the optimal format for the DynamicMatrix provided
by Morpheus to switch to given a matrix, an operation and
a target hardware. The most straightforward approach for
achieving this task is to utilize a run-first tuner that runs
the operation of interest for every format supported, measures
the desired metric and selects the best performing format as
the optimum. Such an approach will be at expense of the
overall runtime performance (even though it will provide the
most accurate prediction) as it requires multiple expensive
conversions between the different formats, with the expense
increasing as more formats are added. A better approach,
which reduces the prediction cost, is to use ML models to
find the optimal format. A high-level overview of our proposed
auto-tuning pipeline is shown in Figure 1.
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Fig. 1: High-level overview of the auto-tuning pipeline. Red
and green boxes represent offline and online operations re-
spectively.

The auto-tuning pipeline is divided in the offline (red) and
online (green) stage. The offline stage has to be executed
once for every new architecture and operation we want to do
predictions for, and the results from that stage can then be
reused during the online stage.

A. Offline Stage
The first stage of the pipeline is the actual model generation

where we train, tune and extract the ML model in a file,

for a given architecture and operation, to be used later on
by the auto-tuner. We use approximately 2200 real-valued,
square matrices of varying sizes, sparsity patterns and different
application domains, available from the SuiteSparse Collec-
tion [20].

For every matrix in the dataset, we first perform profiling
runs on the operation and architecture of interest, and measure
the runtime in order to determine the optimal format, i.e the
format with the shortest runtime for the operation, and export
its format ID to be used in the later stages. At the same time,
we perform a feature extraction routine, described in detail in
Section IV, on the matrices in order to generate inputs to be
used during the training process. Both the input features (input
data) and format ID (input targets) are used to train and tune
the ML model, a description of which is given in Section V,
and once the tuned model is obtained it is exported to a file
and stored for later use.

To streamline the training process for users, we wrap this
process in a Python framework called Sparse.Tree1 which uses
scikit-learn [21] under the hood. Users can use Sparse.Tree to
generate models for new systems or use the pre-trained models
from the Model Database for the x86 and ARM CPUs or
NVIDIA and AMD GPUs used in this work.

B. Online Stage

In order to be able to automatically select the optimum
format to be used by Morpheus in an application, we need to
be able to make the decision efficiently and online, i.e. while
the application is running. In the second stage of the pipeline,
we implement Oracle, a C++ architecture-independent auto-
tuner that uses the DynamicMatrix provided by Morpheus and
loads an ML model from a file specified at runtime in order
to make the decision. Note that by “architecture-independent”
we refer to the fact that the tuner is agnostic to the target
hardware it is tuning for, as this information is captured by
the model loaded at runtime.

For the auto-tuner to be able to use the model, the features of
the input matrix need to be extracted in the same way as during
the first, training, stage. Then by traversing the model, Oracle
returns the optimal format ID that Morpheus uses to switch to
and perform the operation of interest. Oracle is described in
more detail in Section VI.

IV. FEATURE EXTRACTION

Feature extraction in the context of this work refers to the
process of transforming the original sparse matrix into a set
of numerical “features” that can be processed by the model
while preserving the information about the sparsity pattern
of the original matrix. Relevant features to the problem of
interest result in a model that can make informed decisions,
however there is a trade-off between the overheads required for
computing these features and the accuracy of the decision that
is made based on these features. In other words, by providing
the model with a large amount of relevant information about

1Available at: https://github.com/morpheus-org/sparse.tree



Parameter Description Formula
M # of rows -
N # of columns -

NNZ # of non-zeros -

NNZ
avg. NNZ

NNZ = NNZ
Mper row

ρ density ρ = NNZ
M∗N

max(NNZ)
max NNZ

max(NNZ) = maxMi=1NNZiper row

min(NNZ)
min NNZ

min(NNZ) = minM
i=1NNZiper row

σNNZ
std of NNZ

σNNZ =
∑M

i=1 |NNZi−NNZ|2
Mper row

ND # of diagonals -

NTD
# of -true diagonals

TABLE I: Feature parameters used for training the model and,
where relevant, the corresponding formula used for computing
each one.

the problem will facilitate better learning, but at the cost of
having to compute that information. For the purposes of this
work, a set of 10 features has been selected (see Section IV-A)
as shown in Table I, capturing information about the basic
structure of the sparse matrix but also about the distribution
of non-zeros across the rows and diagonals of the matrix.

A. Feature selection

The first three features – number of rows (M), number
of columns (N ) and number of non-zeros (NNZ) – aim to
provide a general idea of the size of the matrix, and they are
easy to capture as they are provided by the DynamicMatrix.
According to Monakov et al. [8], COO is well suited for very
sparse matrices with many empty rows and we therefore also
add the average number of non-zerors per row (NNZ) and
the density (ρ) of the matrix to the set of features.

On the other hand, the performance of specific purpose
formats, such as DIA and ELL, is heavily affected by the
distribution of non-zeros as distributions that are not a good
fit for each format will result in excessive padding of zero
elements in the matrix hindering the overall performance. ELL
allocates memory based on the maximum number of non-
zero elements in a row, therefore matrices with extremely
uneven distribution of non-zeros per row are not a good fit
for such a format. This information is captured by measur-
ing the maximum and minimum number of non-zeros per
row (max(NNZ), min(NNZ)) and the standard deviation
of the non-zeros per row (σNNZ). In a similar manner,
the DIA format allocates memory based on the number of
diagonals, therefore for matrices that have a large number
of diagonals that each only have a few elements will again
result in excessive padding. This time therefore the diagonals
of the matrix are traversed, keeping count of the number of
diagonals (ND) with at least 1 non-zero and the number of
true-diagonals (NTD) that have number of non-zeros above
a threshold. Since HYB and HDC are hybrid formats, the
existing features remain representative. More details on how

the features are actually extracted for the different formats are
given in Section VI-C.

V. MACHINE LEARNING MODEL

Our aim is to train a model that can predict the optimal
storage format of a given sparse input matrix. This type of
problem falls into the category of multi-class classification
problems. During training, for each input matrix in the set,
we extract a collection of 10 features and the target attribute
that corresponds to the index of the optimal format, obtained
from the profiling runs. The objective of the model is to try
and determine a mapping between the input features and the
optimal format ID, which can be described by Equation 1:

f( ~x1, ~x2, ..., ~xn)→ yn(COO,CSR, ...,HDC) (1)

where ~xi represents the feature vector of the ith sparse matrix
in the training set and yn represents the target vector with
each entry containing the index of one format from the six
available.

To train a model to predict the value of the target of
interest, we are using a decision tree ML algorithm that
effectively learns simple decision rules inferred from the data
features. The reasons for this choice are two-fold: firstly, it is
simple to understand and interpret this method; and secondly,
it requires little to no data preparation before training the
model or using it for prediction. However, decision trees can
overfit by creating over-complex trees that do not generalize
the data well or become unstable in small variations in the
data. To circumvent these issues and generate the optimal
model architecture, an exhaustive Grid search is performed
to search from the optimal hyperparameter values in a defined
hyperparameter space. In addition, to improve the robustness
of the model, an ensemble of decision trees is built, called a
“random forest”, that effectively fits a number of decision tree
classifiers onto different sub-samples of the dataset. Whilst
random forest classifiers can improve the predictive accuracy
of the model and control overfitting, this comes at the expense
of higher prediction times since multiple trees need to be
traversed and the decision from each tree has to be combined
into a single final result.

For this work we are specifically interested in training a
model to predict the optimal format to be used during the
SpMV operation for every backend supported in Morpheus,
however the techniques and algorithms used here are transfer-
able to other sparse operations. Models using both decision
tree and random forest methods are trained and tuned in
Python, for a number of x86 and ARM CPUs as well as
NVIDIA and AMD GPUs, and extracted to a file to be used
during the auto-tuning phase.

VI. MORPHEUS ORACLE - AN AUTO-TUNER FOR
AUTOMATIC FORMAT SELECTION

To facilitate a systematic way of performing format se-
lection we developed Oracle, a header-only C++ library for
automatic format selection. It has been developed to comple-
ment the dynamic switching capabilities in Morpheus and tune



its performance by automating the process of selecting the
optimal format to use for a given operation and target architec-
ture. Oracle follows a similar design philosophy to Morpheus,
where containers are separated from the algorithms. Containers
here represent the different tuners that are supported by the
package and are responsible for encapsulating the specifics
of each tuner’s implementation exposing the user only to an
interface that configures and runs the tuner.

A. Tuners

Currently, Oracle supports three tuners: 1) Run-first, 2) De-
cisionTreeTuner and 3) RandomForestTuner. Each tuner is
responsible for managing the complexities of selecting the
optimal format. For example, the Run-first tuner records the
iteration time each format takes to perform N-iterations for
a given operation and applies statistics to determine which
format was best. On the other hand, DecisionTreeTuner and
RandomForestTuner require an ML model to be loaded from
file that is represented using a tree structure which is traversed
in order to determine the optimal format. DecisionTreeTuner
only traverses a single tree whilst RandomForestTuner tra-
verses multiple trees in the ensemble and then performs a
voting scheme to decide the optimal format. In this case, the
majority voting scheme is used that chooses the optimal format
to be the one with the most votes.

The performance of each of the three tuners is a direct trade-
off between runtime overhead and prediction accuracy. Run-
first tuner offers the most accurate prediction at the expense
of expensive conversions between each supported format and
DecisionTreeTuner offers very fast but less accurate predic-
tions. RandomForestTuner improves the prediction accuracy
of DecisionTreeTuner by using multiple trees with the runtime
of the prediction process proportional to the number of trees
used. The support of multiple types of tuners allows users to
choose one based on their requirements.

B. Operations

Each sparse algorithm offered by Morpheus can be tuned to
use the optimal format, effectively optimizing the algorithm.
An interface for the SpMV algorithm is defined through the
TuneMultiply operation, and any additional operations will
follow the same principle. By using compile-time introspection
we can maintain a single high-level interface for the various
supported operations and specialize the implementation for
each tuner. Note that the Oracle package interacts with Mor-
pheus by requesting: 1) the DynamicMatrix to tune for and
2) the execution space to run the operation in, and it returns
the ID of the best format the DynamicMatrix should switch
to.

The input of the tuning operation requires the DynamicMa-
trix and the tuner, along with the desired execution space, as
template parameter. Upon completion of the tuning operation,
the tuner can be queried for the optimal format. In the case
where the Run-first tuner is passed to TuneMultiply, the tuning
operation will perform N-iterations of SpMV for each format,
with the tuner keeping track of the timings. However when ML

tuners are used, they will evaluate the model and determine
the optimal format. In order to be able to do so, ML tuners
have to perform feature extraction on the fly.

C. Feature Extraction

The biggest challenge when dealing with sparse matrices is
that each format has its own representation in memory that
can be drastically different between formats. When it comes
to feature extraction, the matrix has to be traversed in order
to collect the necessary information. Extracting the features
defined in Section IV on the fly normally would require
traversing the rows and diagonals of the matrix multiple times,
which for matrices with large number of rows can be expen-
sive. For offline feature extraction during the training process
traversing the matrix multiple times might be expensive, but
not prohibitive, as the process is generally carried out only
once. However, in an online scenario such as during the auto-
tuning process this would potentially eliminate any benefits
resulting from the optimization process.

To enable format extraction online, Morpheus has been
extended to provide matrix statistics on a per-format basis and
across the different supported backends, eliminating the need
for any data transfers across spaces. Multiple statistics can be
computed at the same time, reducing the number of times the
matrix has to be traversed and reducing the runtime cost of
the process. Oracle can then perform online feature extraction
by inspecting the active format of the DynamicMatrix and in
turn predict the optimal format by querying the model of the
tuner.

VII. RESULTS AND EVALUATION

In this section, the performance of the ML auto-tuners
available in Oracle is measured and evaluated. First, profiling
runs are carried out to determine the distribution of the optimal
format per matrix across the different systems available, and
evaluate the performance benefit from switching to the optimal
format instead of using a single default format (CSR). Next,
the predictive performance of the ML models is quantified
comparing the baseline and tuned models. The cost of the
prediction process is quantified with respect to the time it
takes to carry out a single SpMV operation and finally the
performance of Morpheus in conjunction with the auto-tuner
by Oracle is evaluated.

A. Setup

All experiments were carried out on the ARCHER2 [22],
Cirrus [23] and Isambard [24] supercomputers; their compute
node architectures are described in Table II. Experiments run
across all four backends supported by Morpheus spanning a
representative set of all major hardware architectures e.g x86
(Intel and AMD) and ARM CPUs as well as NVIDIA and
AMD GPUs.

The dataset used in the experiments consists of approxi-
mately 2200 real, square matrices available from the SuiteS-
parse library, in an 80%-20% split between training and test
set.



SYSTEM SUBSYSTEM QUEUE CPU GPU

ISAMBARD

A64FX A64FX 1X FUJITSU A64FX -(48 CORES)

P3
INSTINCT

4X AMD INSTINCT
1X AMD EPYC 7543P MI100

AMPERE
(32 CORES) 4X NVIDIA AMPERE

A100 40GB

XCI ARM 1X MARVELL THUNDERX2 -ARM (32 CORES)

CIRRUS
STANDARD

2X INTEL XEON -E5-2695 (18 CORES)

GPU 2X INTEL XEON 4X NVIDIA VOLTA
GOLD 6248 (18 CORES) V100 16GB

ARCHER2 STANDARD
2X AMD EPYC 7742 -(64 CORES)

TABLE II: Node configurations for the systems used in the
experiments.

B. Format Distribution

Since no single format performs best across different spar-
sity patterns, target hardware and operations, in order to get an
understanding of which format performs optimally across the
different matrices in the dataset, profiling runs of the SpMV
operation are carried out on the available platforms. For every
matrix in the dataset, supported format and available platform
the runtime of 1000 SpMV repetitions is recorded and the
format with the minimum runtime is set to be the optimal
format for the particular matrix and platform. Figure 2 shows
the distribution of the optimal formats per system and format
for all matrices in the SuiteSparse dataset.
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System

0

20

40

60

80

100

Fo
rm

at
 D

ist
rib

ut
io

n 
(%

)

Format:
COO
CSR
DIA
ELL
HYB
HDC

Backend:
OPENMP
SERIAL
CUDA
HIP

Backend:
OPENMP
SERIAL
CUDA
HIP

Fig. 2: Optimal Format distribution for 1000 repetitions of
SpMV using the SuiteSparse dataset. The optimal format for
each matrix is selected to be the one with the smallest runtime.

From Figure 2 it is clearly shown that for the biggest portion
of matrices in the set the optimal format across systems and
backends is CSR, validating its role as the most commonly
used storage format. However, we do observe that even on the
same hardware the distribution can change quite drastically.
For the Serial backend on the A64FX system more matrices
perform better by using HDC or COO formats, whereas
for the OpenMP backend these become CSR. However, on
Cirrus and Archer2 systems the opposite effect is observed
where matrices that perform best with CSR on the Serial

backend are actually performing best with COO or DIA on
the OpenMP backend. In addition, the distribution on GPU
systems compared to the CPU systems is much more diverse
with optimal formats chosen from almost every available
format class.

The main takeaway here is that the format distribution for
every system/backend in the experiment is unbalanced, with
CSR being the clear majority. Therefore, the classification
problem in Section V falls in the category of the imbalanced
classification problems or rare event prediction. A large portion
of real-life matrices perform well using CSR, however an auto-
tuner that can predict rare events is useful if in the case where
selecting a different format benefits performance noticeably.

C. Optimal Format Performance

As part of the experiment shown in Section VII-B, the
timings of SpMV operation were recorded in an effort to
quantify the real benefit in those cases where the optimal
format is not CSR. In Figure 3 the runtime of SpMV using
CSR is measured against the equivalent runtime of the optimal
format for each matrix in the dataset on the OpenMP backend
and across the available systems. Note that matrices with
optimal format set to CSR are omitted for clarity. Whilst a lot
of the matrices result in a speedup of less than 1.5×, there is a
noticeable number of matrices that exhibit speedups between
1.5× and 10.5×, with an average speedup of approximately
1.8× for Cirrus, XCI and A64FX, and of 1.3× on Archer2.
Similar results are obtained for the Serial backend on the same
systems; these have been omitted in the interest of the available
space.

Fig. 3: Runtime speedup of SpMV using the optimal format
against CSR on the OpenMP backend of the available systems
for the SuiteSparse dataset. Matrices with optimal format set
to CSR are omitted for clarity.

For the CUDA and HIP backends, the runtime speedups
are more noticeable compared to the ones measured on the
CPU backends. As shown in Figure 4, the average speedup
for the CUDA and HIP backends is 8× and 10× respectively,



Fig. 4: Runtime speedup of SpMV using the optimal format
against CSR on CUDA and HIP backends. An NVIDIA V100
and A100 GPU is used on Cirrus and Ampere (Isambard)
systems and an AMD MI100 on Instinct (Isambard). Matrices
with optimal format set to CSR are omitted for clarity. The
average speedup is 8× and 10× on CUDA (both for V100
and A100) and HIP backends respectively.

with maximum speedups reaching up to 1000×. After closer
inspection of the memory read/write requests, and the occu-
pancy achieved during the launch of the SpMV kernel, for one
of the matrices (mawi 201512020030), the CSR version issues
5× more requests and the occupancy is 10× smaller compared
to the version using the optimal format. The sparsity pattern
of the matrix results in uncoalesced accesses and leaves the
GPU under-utilized when the CSR format is used.

These results justify the development and use of an auto-
tuner such as the one proposed in this paper since the choice
of format can have noticeable benefits in the performance of
the operation. However, the auto-tuner must be lightweight to
avoid performance degradation in the case where the optimal
format is CSR.

D. Hyperparameter Tuning

Hyperparameter tuning for ML algorithms is essential for
the overall performance of the ML model. This process relies
more on experimental results rather than theory and the best
method to determine the optimal settings is by trying different
hyperparameter combinations and evaluate the performance of
the model. To account for overfitting and ensure the model
generalizes well on unseen data we perform a 5-fold CV on
the training set and iteratively fit the model 5 times each time
training on 4 folds and validating on the 5th.

For hyperparameter tuning, a grid search is performed to
search for the optimal hyperparameter values in a defined
hyperparameter space, each time performing the entire 5-fold
CV process. We compare all the generated models and the best
one is selected to train on, using the full training set, obtaining
the tuned model. In our case, we perform the tuning process
for both the decision tree and random forest classifiers.

Table III shows the hyperparameters used to generate the
baseline (left sub-columns) and tuned (right sub-columns)
random forest for each available backend and system, along
with the achieved accuracy and balanced accuracy on the test
set. Similar qualitative results were achieved for the decision
tree classifier, hence are omitted in the interest of the available
space. We tune for the main parameters that affect the gener-
alization ability of a random forest classifier (the number of
estimators, max depth of the trees and the minimum number of
samples on the leaf nodes) and we also test different secondary
parameters such as bootstrap (sampling data points with or
without replacement), minimum samples required before a
split, maximum features considered before splitting a node
and the criterion function used to measure the quality of the
split.

Even though the tuning process results in a model that
reports a similar average accuracy score (92.63%) to the
baseline (92.36%), the tuned model is using significantly
fewer and shallower trees (estimators) resulting in much faster
prediction times. However, since the dataset is unbalanced,
a more indicative metric to report is the balanced accuracy

System Backend
Estimators Bootstrap Max Min Min Max Accuracy Balanced

Depth Samples Samples Features Criterion (%) Accuracy
Leaf Split (%)

Archer2 Serial

100

40

T

F 21 21

1

3

2

2

10

4

gini

entropy 95.13 95.86 83.65 88.49
OpenMP 40 T 20 14 1 10 9 entropy 91.94 92.18 83.39 85.12

Cirrus
Serial 50 T 18 18 2 2 6 entropy 93.60 94.08 79.13 81.71
OpenMP 30 T 19 15 1 10 8 gini 92.65 91.71 68.36 78.39
Cuda 50 F 17 16 1 10 4 entropy 92.89 93.60 71.72 74.32

A64FX Serial 90 T 20 18 1 2 5 gini 87.93 87.93 84.56 86.22
OpenMP 30 T 19 13 1 5 6 gini 91.26 91.75 89.29 91.62

P3 Cuda 40 F 22 14 2 10 4 entropy 86.46 87.17 84.95 83.82
HIP 40 T 19 11 1 2 6 entropy 93.38 92.67 90.82 87.92

XCI Serial 60 F 24 12 2 10 6 entropy 96.21 96.92 91.34 95.72
OpenMP 20 T 16 10 1 5 10 entropy 94.54 95.01 55.25 75.31

Mean 92.36 92.63 80.22 84.42
Std (±) 2.93 3.02 11.04 6.64

TABLE III: Hyperparameters used during the tuning process of the Random Forest classifier. The accuracy and balanced
accuracy achieved for the test set are also reported. We report both the baseline (left sub-columns) and tuned (right sub-
columns) classifier parameters and score. The tuning process uses a 5-fold Cross Validation (CV) method.



calculated as the average of the proportion of correctly clas-
sified samples of each class individually. In this case, the
tuned model (84.42% ± 6.64%) performs noticeably better
compared to the baseline (80.22% ± 11.04%). It is worth
pointing out that for some system and backend pairs the
change in balanced accuracy is quite drastic (e.g 10% and 20%
increase for the XCI and Cirrus systems using the OpenMP
backend respectively).

For reference, the accuracy and balanced accuracy achieved
on the tuned decision tree is 90.85%± 7.87% and 78.12%±
4.91% respectively. This result justifies the development of
both DecisionTreeTuner and RandomForestTuner as this al-
lows for a faster predictions when the DecisionTreeTuner is
used without significant sacrifice in prediction accuracy.

E. Auto-tuner Performance

The tuned random forest classifier with parameters set as
in Table III is deployed in C++ using the RandomForestTuner
in Oracle on a synthetic benchmark. The benchmark performs
1000 SpMV operations using a sparse matrix switched to the
optimum format selected by the tuner at runtime. The dataset
used in the benchmark consists of all the matrices in the
test set. For each system and backend pair, the auto-tuner
runtime performance is measured in the form of equivalent
SpMV operation using the CSR format, given by Ttuning =

TCSR

TFE+TPRED
, where TCSR, TFE and TPRED are the runtime

of a single CSR SpMV, feature extraction and prediction
operations respectively.

System Backend Mean Std Min Q1 Q2 Q3 Max

Archer2 Serial 10 19 2 4 7 10 303
OpenMP 25 20 2 14 21 31 179

Cirrus
Serial 10 30 2 3 4 7 359
OpenMP 64 72 2 21 33 83 643
CUDA 7 3 1 6 6 8 29

A64FX Serial 6 9 1 3 4 5 120
OpenMP 45 40 1 23 28 59 246

P3 CUDA 2 3 1 2 2 2 42
HIP 15 9 1 7 18 23 30

XCI Serial 12 28 2 6 7 9 335
OpenMP 17 29 2 3 6 18 203

TABLE IV: The runtime cost, expressed in terms of SpMV
operations using CSR, of using the auto-tuner. Measured as
Ttuning = TCSR

TFE+TPRED
, where TCSR, TFE and TPRED are

the runtime of a single CSR SpMV, feature extraction and
prediction operation respectively. Columns show the statistics
of the runtime cost and Q1 to Q3 represent the quartiles.

Table IV shows statistics on the runtime cost of the tuner in
the form of the number of SpMV operations using CSR for ev-
ery system and backend pair. We do observe that the OpenMP
backend requires on average more time to run the auto-tuner
irrespective of the system, even-though it might use fewer
estimators compared to the equivalent Serial backend. This
indicates that the random forest using the OpenMP backend
consists of fewer but more complex estimators compared to
Serial. RandomForestTuner on GPUs on the other hand spends
less time running the auto-tuner as the average runtime cost is
only few repetitions compared to CPU backends. At least 75%

of the matrices in the test set require fewer than 100 repetitions
for the tuning process. In real-life applications, for example
solving a time-dependent Partial Differential Equation (PDE),
would require many thousands of SpMV operations mean-
ing that the auto-tuner proposed would not incur noticeable
overheads. Even in the maximum cases observed, the cost of
running the tuner remains within accepted limits.

F. Tuned SpMV Performance

Using the same setup as in Section VII-E we also quantify
the runtime speedups in SpMV obtained by adopting the
proposed auto-tuner compared to SpMV using CSR. The
speedup is measured as shown in Equation 2:

Speedup =
TCSR

TTUNE + TOPT
=

TCSR

TFE + TPRED + TOPT
(2)

where TCSR, TOPT , TFE and TPRED are the runtime of 1000
SpMV operations using CSR and the predicted format, feature
extraction and prediction operations respectively.

Figure 5 shows the achieved speedup on OpenMP, CUDA
and HIP backends on the available systems for all the matrices
in the test set. Note that the Serial backend is excluded due to
space constraints as a similar trend to the OpenMP backend is
observed. On CPUs, the speedup from introducing the auto-
tuner and selecting the predicted format results in similar
performance as if we were to use the CSR format. The result
is consistent across all available systems with average speedup
close to 1.1×. For the majority of matrices the overheads from
the auto-tuner do not reduce overall performance as most of
the samples are concentrated around 1. The few for which
performance falls significantly below 1, we do observe the
impact from wrongly classifying the optimal format. However,
in many cases the auto-tuning process results in noticeable
speedups, with maximum achieved speedup of 7× on the
A64FX system.

On the GPU backends (Figure 5b), the auto-tuning approach
is much more beneficial compared to the OpenMP backend
as higher average speedups are achieved. On average, for the
NVIDIA A100 (Ampere) and V100 (Cirrus) GPUs a 1.5×
and 3× average speedup is achieved respectively, a result
that follows the bandwidth ratio between the two architec-
tures. The AMD M150 (Instinct) GPU however is the one
architecture that clearly benefits from the introduction of the
auto-tuner as it reports an average speedup of 8×. Note that
compared to the CPU backends, on GPUs the performance
of a mis-classification is less severe as fewer samples fall
significantly below 1. In addition, for a number of matrices
the achieved speedup improves performance by orders of
magnitude highlighting the importance of adopting an auto-
tuning approach for format selection. In all three backends
shown in Figure 5 the average speedup achieved from using the
auto-tuner matches the average optimal speedup for when the
optimum format was selected (without performing any auto-
tuning) suggesting that the overheads introduced by the auto-
tuner become negligible as the number of SpMV repetitions
increases.



(a) OpenMP (b) CUDA/HIP

Fig. 5: Obtained runtime speedup from using the auto-tuner and predicted format against using CSR in performing 1000
SpMV operations on the available systems for every matrix in the test set. The average speedup (µ) from using the predicted
format (includes also the time the tuner requires to make a prediction) matches the average speedup from using directly the

optimal format, indicating that minimal overheads are introduced on average from using the tuner.

VIII. RELATED WORK

Over the years ML has been proven a valuable approach
for performing various optimization tasks such as code opti-
mization, task scheduling and model selection [18]. Applying
auto-tuning techniques for optimizing sparse linear algebra
remains an active area of research with developments spanning
topics from format specific parameter tuning ( [5], [10], [18])
to automatic format selection across current and emerging
architectures.

Benatia et al. [25] proposed an Support Vector Machine
(SVM) classifier for selecting the optimal format from four
available formats for the SpMV on GPUs, reporting classifi-
cation accuracy up to 88%. Similarly, Sedeghati et al. [26] used
a Decision Tree based classifier to choose from five available
formats resulting in 81% accuracy on GPUs. On the other
hand, Li et al. [13] used an input adaptive SpMV auto-tuner
based on ruleset classification that maintains a confidence
value for each test sample. If the prediction of the classifier is
below the defined threshold, the auto-tuner selects the optimal
format and SpMV kernel otherwise switches to a run-first
approach to make the decision, reporting accuracy of up to
85%.

To alleviate the problem of manually defining the features
to be extracted, Zhao et al. [16] uses a Convolutional Neural
Network (CNN) model for selecting the optimal format for
SpMV both on CPU and GPU platforms. This approach
requires a transformation/compression on the input matrix to
a fixed size (128 × 128) image-like representation to be fed
to the network, however reports the highest accuracy from all
(93% and 90% on CPU and GPU platforms respectively) at
the expense of higher prediction time compared to the ML
alternatives.

Zhao et al. [27] takes the format selection approach a step
further proposing an overhead-conscious selection mechanism
for SpMV-based applications that also takes into account
the overheads from format conversion. By building several
regression models reports accuracy up to 88% and average
runtime speedup of applications in the range of 1.14× - 1.43×.

Our proposed auto-tuner manages to combine speed of ML
methods such as the ones proposed by Li et al. and the
accuracy reported by Zhao et al. on a range of storage formats
and across most of the key HPC platforms. Note however
that even-though the datasets reported in previous work are
unbalanced, none of the authors reports the achieved balanced
accuracy therefore is not possible to make a fair comparison
between contributions based on the accuracy alone.

IX. CONCLUSIONS AND FURTHER WORK

Selecting the optimal sparse matrix storage format is im-
portant for allowing applications to remain optimal across
the available hardware architectures. However, the selection
process is not a trivial task. ML offers a systematic solution
to this problem by approaching it as a classification task. In the
case of the format selection, this problem can be categorized
as a rare event prediction problem due to the imbalance
observed in the data. By training, tuning and deploying an
ensemble of decision trees, we are able to accurately predict
the optimum format to be used for the SpMV operation across
the main HPC architectures. We find out that although most
of the time the best option is to use CSR, in some cases
the runtime performance is improved by orders of magnitude
from switching to the optimal format. Finally, our proposed
light-weight auto-tuning approach introduces overheads in the
overall runtime of SpMV which are amortised quickly and



within a few SpMV operations on average, with a more
noticeable benefit to GPUs.

As a next step, we will explore ways of further improving
the accuracy of our models either through balancing the dataset
or other ML methods such as gradient-boosted decision trees.
Furthermore, eliminating the requirement for manual feature
extraction remains an avenue for further research.
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