
SoftwareX 27 (2024) 101775

A
2

O

M
f
C
E

A

K
S
G
D
P
P

C

1

f
m
o
h
t
a
f
g

r
b
c
b

h
R

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

orpheus: A library for efficient runtime switching of sparse matrix storage
ormats
hristodoulos Stylianou ∗, Michèle Weiland
PCC, The University of Edinburgh, Edinburgh, United Kingdom

R T I C L E I N F O

eywords:
parse matrix storage formats
eneric programming
ynamic matrices
erformance portability
roductivity

A B S T R A C T

Sparse matrix storage formats have evolved over the years to better exploit the particular strengths of different
hardware architectures or to better match the sparsity patterns of matrices, with the aim to optimize operations
on the matrices. However, the integration of new formats in existing source code is an invasive procedure that
often requires a complete re-writing of the code. Morpheus introduces a framework that abstracts the notion
of the different formats in order to optimize the performance of the sparse operations and increase the user’s
productivity by seamlessly matching the underlying data-structure to the computation at runtime, with minimal
overheads.

ode metadata

Current code version v1.0.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
Code Ocean compute capsule N/A
Legal Code License Apache License, Version 2.0
Code versioning system used git
Software code languages, tools, and services used C++, Kokkos, OpenMP, Cuda, HIP
Compilation requirements, operating environments & dependencies CMake 3.16+, C++17 compiler, Linux, GoogleTest
If available Link to developer documentation/manual https://morpheus-org.github.io/morpheus
Support email for questions c.stylianou@ed.ac.uk

. Motivation and significance

Sparse matrix computations are a key component of many per-
ormance critical numerical simulations. A desire to represent sparse
atrices efficiently in memory has led to the development of a plethora

f sparse matrix storage formats, in particular given the evolution of
ardware architectures. Each format is designed to exploit the par-
icular strengths of an architecture or the specific sparsity pattern of
matrix. Filippone et al. [1] show that using an appropriate storage

ormat for an operation can have significant performance gain over a
eneral-purpose format.
Morpheus [2] is designed to enable efficient and transparent

untime-switching of sparse matrix storage formats across multiple
ackends. The library provides an abstraction for sparse matrices that
an dynamically adapt the underlying sparse matrix data-structure to
etter suit an operation, target architecture and sparsity pattern of a

∗ Corresponding author.
E-mail addresses: c.stylianou@ed.ac.uk (Christodoulos Stylianou), m.weiland@epcc.ed.ac.uk (Michèle Weiland).

matrix. The adoption of such an abstraction by developers and users
allows them to focus on their scientific endeavour without the need
to understand the specifics of each supported sparse matrix storage
format. Morpheus enables them to develop efficient and performance
portable code that is not tied to any particular storage format, us-
ing a single source code and thus eliminating the need for testing
and maintaining multiple code bases. New optimization opportunities
emerge through the option of switching to different storage formats at
runtime. The simple design of Morpheus allows for the straightforward
addition of new formats over time. Users can take advantage of such
new formats without requiring any changes to their own code bases,
allowing them to efficiently represent a wider range of sparsity patterns
and thus increasing the lifetime and performance of their software.

Several other approaches specific to the optimization of sparse
linear algebra through switching and selection of the most suitable
vailable online 29 May 2024
352-7110/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.softx.2024.101775
eceived 1 February 2023; Received in revised form 1 May 2024; Accepted 21 May 2024

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://orcid.org/0000-0002-3297-8631
https://orcid.org/0000-0003-4713-3073
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00078
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
https://morpheus-org.github.io/morpheus
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:c.stylianou@ed.ac.uk
mailto:m.weiland@epcc.ed.ac.uk
https://doi.org/10.1016/j.softx.2024.101775
https://doi.org/10.1016/j.softx.2024.101775
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2024.101775&domain=pdf
http://creativecommons.org/licenses/by/4.0/


SoftwareX 27 (2024) 101775Christodoulos Stylianou and Michèle Weiland
Fig. 1. High-level overview of Morpheus showing the major components of the library.

storage format also exist, each offering something different to the users.
Filippone et al. [3] provide an object oriented design model for a sparse
linear algebra package which relies on Design Patterns [4] and Fortran
specific features in order to achieve efficient dynamic switching, but
lacking support for multiple backends. clSpMV [5] provides a rich set
of formats through a product type that can be used in a heteroge-
neous environment. However, the design of the framework prevents
a straightforward and type-safe addition of new formats. SMATER [6]
provides users with a unified programming interface that uses a single
sparse format (Compressed Sparse Row (CSR)) at the interface level
and automatically determines the optimal format and Sparse Matrix-
Vector Multiplication (SpMV) implementation for any input sparse
matrix at runtime. GINKGO [7] is a high-performance sparse linear
algebra library for many-core systems that abstracts all functionality
as linear operators in an object-oriented design. Morpheus also offers a
single abstraction for sparse matrices, ensuring a simple and intuitive
interface through a functional design. Compared to GINKGO, Morpheus
focuses on operations that can be used as building blocks to sparse
linear algebra libraries, such as SpMV, rather than offering complete
solvers and provides a simple mechanism for switching across the
available formats without the need of code modifications. In addition,
the adoption of abstractions regarding hardware platforms and memory
hierarchies ensures an extensible code base that can adapt to any new
hardware introduced in the future. Morpheus preserves value semantics
across the different data structures and algorithms, ensuring type-safety
and reducing runtime errors.

2. Software description

Morpheus is a C++17 header-only template library. It follows a
functional design that separates the data structures (containers) from
the functions (algorithms). Algorithms act on containers, and for each
backend that is available a version of the algorithm exists. Conceptu-
ally, there are two layers of functionality that balance performance and
flexibility:

1. Compile-time Layer: Deals explicitly with the different sparse
matrix storage formats and their corresponding algorithms at
compile-time resulting in zero runtime overheads.

2. Runtime Layer: Built on top of the compile-time layer. It is
responsible for enabling the dynamic functionality of Morpheus.
This layer needs to be lightweight and defer only computa-
tionally inexpensive operations to the runtime in order to not
introduce prohibitive overheads.

Table 1
Compile-time parameters of each container. Only ValueType is required by the user and
sensible defaults are selected by Morpheus if any of the rest is ommited.

Parameter Description Valid Type

ValueType Type of values held by the Arithmetic type
container (Required)

IndexType Type of indices held by the Integral type
container

Layout The ordering of data in Column-Major
1D memory storage or Row-Major

Space The memory space HostSpace,
(as defined by Kokkos) Cuda/HIPSpace

To reduce the learning curve for dealing with sparse formats and oper-
ations, Morpheus is heavily based on templates and meta-programming
techniques (discussed in more detail below) such that both layers
expose the same unified API to the user.

2.1. Software architecture

A high-level overview of Morpheus’s design is shown in Fig. 1, which
illustrates how the different components of the library are organized. In
the following sections, each component will be introduced in turn. Note
that in order to provide support for the various hardware platforms
and memory hierarchies, Morpheus adopts two notions of abstraction
introduced by Kokkos [8,9]:

1. the Execution Space, which specifies where code will be executed;
2. the Memory Space, which specifies where the data will reside in
memory.

2.1.1. Containers
All the data structures supported by Morpheus are implemented

individually as containers. Containers are responsible for acquiring
and releasing their own resources following the principle of Resource
Acquisition Is Initialization (RAII) [10]. Each container is uniformly pa-
rameterized by a set of compile-time template parameters described in
Table 1. Currently, Morpheus supports three sparse, two dense and one
dynamic container as shown in Table 2. Note that the DynamicMatrix
container supported can represent any of the available sparse matrix
containers and its functionality is discussed further in Section 2.2.4.
2



SoftwareX 27 (2024) 101775Christodoulos Stylianou and Michèle Weiland

d

g
c

l
t
f
b
s
t
s
b

2

2

i

Table 2
Containers currently supported in Morpheus divided into their logical categories and
their corresponding format.

Category Container Format

Sparse CooMatrix Coordinate (COO)
CsrMatrix CSR
DiaMatrix Diagonal (DIA)

Dense DenseVector 1-D array
DenseMatrix 2-D array

Dynamic DynamicMatrix Dynamic
sparse matrix

Table 3
Different types of data management mechanisms with their associated requirements
and overheads. Note that two containers have compatible type if they both have the
same parameters as shown in Table 1.

Requirements Shallow Copy Deep Copy Convert

Compatible Types ✓ ✓ ×

Same Space ✓ × ✓

Same Format ✓ ✓ ×

Overhead Low Medium High

2.1.2. Algorithms
The different algorithms available in Morpheus are conceptually

ivided into four categories:

1. Algebra: Common linear algebra operations for dense, sparse and
dynamic containers, with focus on the SpMV multiplication.

2. Data Management: Data management routines for copying con-
tainers between memory spaces and converting from one con-
tainer to another.

3. Input-Output: IO operations such as reading/writing a file from/to
disk. Currently, only operations that read/write sparse matrices
in Matrix Market (MM) [11] file-format are supported.

4. Utilities: Routines for modifying the elements of the containers,
such as updating the diagonal or values of a matrix.

2.1.3. Backends
Each execution space supported by Morpheus constitutes a separate

backend. Currently, all algorithms in Morpheus can have generic and/or
custom versions, depending on the backend. Custom algorithms exist
for four backends: (1) Serial (Sequential), (2) OpenMP (Multi-threaded),
(3) CUDA (NVIDIA GPUs) and (4) HIP (AMD GPUs). In addition, the
eneric backend uses Kokkos for generic performance portable kernels
apable of targeting all major HPC platforms.

Algorithms that use the sparse containers are required to provide at
east one implementation per backend and storage format. As a result,
he development and maintenance effort grows drastically as more
ormats and custom backends are introduced. The adoption of a generic
ackend mitigates this issue by creating a single performance portable
ource code for each format capable of running across platforms. In
he case where optimizations specific to a particular architecture and
torage format are desired, a custom backend can be used instead,
alancing development productivity with code performance.

.2. Software functionalities

.2.1. Data management
Morpheus has multiple mechanisms for dealing with data manage-

ment between containers, each with a different set of requirements and
associated costs. To ensure memory leaks are prevented, each container
is responsible for acquiring and realizing its own resources during
construction/destruction as well as once it goes out of scope.

Morpheus offers three types of data management routines, as shown

sharing resources with the source container with minimal overheads
as no data is being copied, (2) Deep copy that performs a bit-wise
copy of data from source to destination using a memcopy operation
and (3) Convert that allows conversions between two different storage
formats through element-wise copies. It is worth pointing out that
Morpheus does not implicitly manage data across memory spaces. In-
stead, the responsibility of synchronizing data across spaces lies to
the user and facilitated via the deep copy3 semantics. To manage
development overhead from direct format conversions, Morpheus uses
a proxy format policy, with the COO format acting as the intermediate
format. However, direct format conversions can be provided by users,
if desired.

2.2.2. Mirroring
Morpheus supports a mirroring interface that, given a container, can

create a compatible type in a user-specified memory space and allocate
its size to match the original container. The create_mirror()
routine always results in a new container with a new allocation and
hence subsequent copies between the two containers will result in
deep copies. On the other hand, the create_mirror_container()
routine will result in a new container that is an alias to the mirroring
container when the user-specified memory space is the same as the
memory space of the mirroring container, otherwise it will result in the
same behavior as the aforementioned routine. As a result, subsequent
deep copies between the two containers will be transformed into shallow
copies avoiding expensive data transfers between containers in the
same space. This functionality is particularly useful in creating a single
source performance portable code as it is demonstrated in Section 3.

2.2.3. Host-device model
The Host-Device Model is used to manage data transfers between

different memory spaces using deep copies, such as between a CPU
(host) and a GPU (device). By default, all containers are assumed to
be on the device, and each container has an equivalent HostMirror
type, that is always accessible by the host. Users can therefore utilize
this functionality in conjunction with the mirroring routines to allo-
cate containers and manage data transfers in both homogeneous and
heterogeneous environments.

2.2.4. Abstract matrix representation
The main data structure of Morpheus is the DynamicMatrix con-

tainer. The DynamicMatrix is a composition of all the available sparse
matrix storage formats supported by Morpheus in a form of a type-safe
union. Therefore, at any given time it can hold one of the available
types and since the set of formats that it holds is known at compile
time, the compiler can generate all versions of the algorithm a priori
and only dispatch the right one at runtime by examining the active state
of the container. This means low latency and therefore low runtime
overheads, but also ease of use as the DynamicMatrix follows the same
semantics as the other containers and it can therefore be declared,
instantiated and invoked in the same way.

The DynamicMatrix acts as an abstract matrix representation that
encapsulates the internal implementation details of each format, effec-
tively resulting in a single interface that users can adopt to seamlessly
use the available formats. The interface of the DynamicMatrix allows
for format switching at runtime through the activate member function.
This function evaluates an enum value that refers to the format to
switch to. Note that switching will result in an empty matrix. In case
it is required to also carry over the existing data, the convert routine
can be used to perform an in-place conversion instead. Additionally,
unsorted or sorted data can be passed to DynamicMatrix and will be
sorted internally if needed.

2.2.5. Unified interface for algorithms across containers and spaces
Each algorithm is a free function. By exploiting the function over-

loading capabilities of C++ we can use the same function name to
3

n Table 3: (1) Shallow copy that results in the destination container



SoftwareX 27 (2024) 101775Christodoulos Stylianou and Michèle Weiland

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3

represent functions that use different containers but perform the same
conceptual algorithm. In addition, the adoption of a functional design
naturally decouples the containers from the algorithms. Since contain-
ers are responsible for where the data is located, the algorithm only
requires to know where it will be executed. As a result, the high-
level interface of Morpheus for algorithms across the different spaces
can remain identical simply by adding an extra parameter to the free
function specifying the execution space the algorithm will be running
in.

2.2.6. Adding new formats
The flat hierarchy design of the sparse containers inMorpheus allows

developers to add new containers independently from the existing
ones and thus each can be tested in isolation. For a new format to
be included in the DynamicMatrix, it first has to be registered in the
FormatsRegistry data structure by adding it to the union container.
Then, for algorithms that use DynamicMatrix, each needs to be updated
with an overload to the new format’s implementation of the algorithm.
In the case where the overload is accidentally omitted, this will result
in a compile-time error requesting the developer to provide the missing
implementation.

3. Illustrative examples

In the following example, we demonstrate how Morpheus can be
used in order to perform a SpMV multiplication using the Dynamic-
Matrix container and on any of the supported backends, without any
source code modifications.
1 #include <Morpheus_Core.hpp>
2 /* Default execution space: Either Serial or OpenMP backend.
3 * If compiled with GPU support this is either HIP or CUDA. */
4 using Space = Morpheus::DefaultExecutionSpace;
5 // A random number generator running in default execution space
6 using Generator =
7 Kokkos::Random_XorShift64_Pool <typename Space::execution_space >;
8 /* A Dynamic Matrix holding values of type double
9 * and lives in the memory space of default execution space */
0 using Matrix = Morpheus::DynamicMatrix <double, Space>;
1 /* A Dense Vector holding values of type double
2 * and lives in the memory space of default execution space */
3 using Vector = Morpheus::DenseVector <double, Space>;
4
5 int main(int argc, char* argv[]) {
6 Morpheus::initialize(argc, argv);
7 {
8 std::string filename = argv[1];
9 // Read format ID from command-line
0 int fmt_id = atoi(argv[2]);
1 // Load matrix on host
2 typename Matrix::HostMirror Ah;
3 Morpheus::IO::read_matrix_market_file(Ah, filename);
4 /* In-place convert matrix to a dynamic matrix
5 * with its active state set as per fmt_id */
6 Morpheus::convert<Morpheus::Serial >(Ah, fmt_id);
7 // Create a dynamic matrix that resides in Space
8 Matrix A = Morpheus::create_mirror_container <Space>(Ah);
9 // Copy data from host to container in Space
0 Morpheus::copy(Ah, A);
1 // Randomly initialize x and set y to zero
2 Vector x(Ah.ncols(), Generator(0), 0, 1);
3 Vector y(Ah.nrows(), 0);
4 // SpMV multiplication in Space
5 Morpheus::multiply <Space >(A, x, y);
6 }
7 Morpheus::finalize();
8 }

Listing 1: Performance portable SpMV example using the DynamicMa-
trix container. Changing the fmt_id at runtime will cause the active state
of the matrix to change, and thus different multiply algorithms can be
executed without code modifications.

Listing 1 illustrates how to read a sparse matrix from file into a
DynamicMatrix, convert it to the format selected through the command
line at runtime, and how to execute the multiply algorithm that per-
forms SpMV in an arbitrary execution space defined at compile time.
Lines 4-13 are shorthand definitions for the containers and spaces used
in the example.

In the main program, the name of the matrix file to be loaded
and the format ID to switch to for the DynamicMatrix are read from
the command line (Lines 20-22). On Line 23 we load the matrix from

Fig. 2. SpMV runtime performance of the different formats and backends available
in Morpheus, normalized by the runtime performance of the CSR format on the same
backend. Various matrices with different sparsity patterns and from different domains,
available in SuiteSparse collection, have been used.

file using the read_matrix_market_file routine. Note that the matrix is
not loaded directly onto the device, but instead into a DynamicMatrix
that resides on the Host defined on Line 22. The user is responsible for
copying the matrix to the device.

On Line 26 we perform an in-place conversion that changes the
active state of the DynamicMatrix to the one defined on the command
line. The final step before performing the SpMV multiplication is to
send all the containers that participate in the algorithm to the device.
On Line 28 we create a new container that is a mirror of the host
DynamicMatrix which is a new DynamicMatrix that lives in Space and
on Line 30 we copy the data from the host to the device. Vectors x and
y initialized (directly on the device) on Lines 32-33.

Finally, on Line 35 the SpMV multiplication is invoked with the
algorithm executed in Space. Note that Space is defined on Line 4 to
be the Morpheus::DefaultExecutionSpace that resolves to one
of the supported execution spaces depending on how Morpheus was
compiled. In other words, when it is compiled with GPU support it
can be either CUDA or HIP, otherwise it will be OpenMP or Serial.
This approach allows us to target different spaces without changing the
source code, just by recompiling Morpheus, although it is also possible
to explicitly define the execution space if so desired (Line 26).

Fig. 2 shows the runtime performance of the SpMV multiplication
for the various formats and backends available in Morpheus, normalized
by the runtime performance of the CSR format in the same back-
end. The example was executed on the CPU (Serial and OpenMP) and
GPU (CUDA) nodes of the Cirrus supercomputer [12]. Each CPU node
has two 2.1 GHz, 18-core Intel Xeon E5-2695 (Broadwell) processors.
Each GPU node two 2.4 GHz, 20-core Intel Xeon Gold 6148 (Skylake)
processors and four NVIDIA Tesla V100-SXM2-16 GB (Volta) GPU ac-
celerators. The set of matrices used, available from the SuiteSparse [13]
collection, includes matrices of different sparsity patterns and from
different domains. The key takeaways from the experiment are:

1. For the same matrix, the format giving the best performance can
vary across backends;

2. The choice of the optimum format can drastically improve run-
time performance, sometimes even by an order of magnitude.

3. A poor choice of format can have a significant detrimental effect
on performance.

The adoption of Morpheus allows users to evaluate the performance
of different formats by simply changing the format ID on the command-
line. In addition, by compiling Morpheus for different backends, users
4



SoftwareX 27 (2024) 101775Christodoulos Stylianou and Michèle Weiland

a

can run on different types of hardware using the same code base. In
both cases, code modifications are not required and performance
optimizations due to format switching can be exploited.

4. Impact

Developers often choose a single format that performs generally
well across operations and target hardware, even though a plethora
of sparse matrix storage formats exist. This can be attributed to the
fact that algorithms are coupled to a specific format and its interface.
Any efforts to change the format require a complete re-write of the
code, resulting in multiple versions of the same code with significant
overheads introduced in development and maintenance.

For software that uses sparse matrices to be able to retain optimum
performance throughout its lifetime it must be able to adapt to and
support emerging formats and hardware architectures that can better
utilize the different sparsity patterns of the matrices of interest. Mor-
pheus provides a single dynamic sparse matrix representation with a
unified interface and is capable of targeting multiple backends seam-
lessly. This allows users to decouple their algorithms from any specific
format, while at the same time use an optimum data structure for
a given operation, sparsity pattern and target architecture. As more
formats and backends are added to Morpheus, users exploit these new
developments without any further code modifications, thus improving
the performance and extending the lifetime of their software. In ad-
dition, the overheads of supporting multiple formats and backends is
shifted to the Morpheus developers, allowing users to remain agnostic
bout the low-level details of each format.

The adoption of Morpheus can assist in the optimization of iterative
solvers through efficient format switching and selection. As a result,
large scale applications that use iterative solvers, such as solving partial
differential equations in the domains of Computational Fluid Dynamics
(CFD)[14], urban earthquake response analyses [15], or weather/cli-
mate prediction [16] to name a few, can also be optimized. In addition,
Morpheus can be used to transform CPU-only codes to be able to target
heterogeneous hardware, e.g. with GPU accelerators.

Recently, Morpheus was successfully used to optimize the High
Performance Conjugate Gradients (HPCG) benchmark [17] where it
(1) enabled HPCG to target heterogeneous hardware and (2) provided
runtime speed-up of up to 2.5× and 7× on CPUs and GPUs respectively
(compared to the original MPI only version), via dynamically selecting
the optimum format on each MPI process [2]. This result demonstrates
the potential and usefulness of a library like Morpheus and can moti-
vate the development of next-generation sparse linear algebra libraries
and iterative solvers that are based on the principle of dynamic and
adaptive matrices.

5. Conclusions

Morpheus is a library of sparse matrix storage formats that can
be used as a building block into the development of sparse linear
algebra applications and iterative solvers. By providing a Dynamic-
Matrix container and a unified interface across multiple formats and
backends, users can focus on the development of their applications
without having to handle the low-level details of the different storage
formats. Morpheus aims to provide performance portable sparse kernels
not bounded to any particular storage formats, through an efficient and
transparent runtime-switching of sparse matrix storage formats across
multiple backends increasing the lifetime of their applications. Future
developments of Morpheus focus on the expansion of the range of the
storage formats supported, to better represent the different sparsity

CRediT authorship contribution statement

Christodoulos Stylianou: Conceptualization, Data curation, For-
mal analysis, Investigation, Methodology, Project administration, Soft-
ware, Validation, Visualization, Writing – original draft, Writing –
review & editing. Michèle Weiland: Funding acquisition, Supervision,
Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This research was funded in whole by EPSRC, United Kingdom
under project ASiMoV (EP/S005072/1). For the purpose of open ac-
cess, the author has applied a creative commons attribution (CC BY)
licence to any author accepted manuscript version arising. We used
the ARCHER2 UK National Supercomputing Service and the Cirrus UK
National Tier-2 HPC Service at EPCC, funded by the University of Edin-
burgh, United Kingdom and EPSRC, United Kingdom (EP/P020267/1).

References

[1] Filippone Salvatore, Cardellini Valeria, Barbieri Davide, Fanfarillo Alessandro.
Sparse matrix-vector multiplication on GPGPUs. ACM Trans Math Software
2017;43(4). http://dx.doi.org/10.1145/3017994.

[2] Stylianou C, Weiland M. Exploiting dynamic sparse matrices for performance
portable linear algebra operations. In: 2022 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC). Los Alamitos,
CA, USA: IEEE Computer Society; 2022, p. 47–57. http://dx.doi.org/10.1109/
P3HPC56579.2022.00010.

[3] Filippone Salvatore, Buttari Alfredo. Object-oriented techniques for sparse matrix
computations in fortran 2003. ACM Trans Math Software 2012;38(4). http:
//dx.doi.org/10.1145/2331130.2331131.

[4] Gamma Erich, Helm Richard, Johnson Ralph, Vlissides John. Design patterns:
Elements of reusable object-oriented software. USA: Addison-Wesley Longman
Publishing Co., Inc.; 1995.

[5] Su Bor-Yiing, Keutzer Kurt. ClSpMV: A cross-platform OpenCL SpMV framework
on GPUs. In: Proceedings of the 26th ACM international conference on super-
computing. New York, NY, USA: Association for Computing Machinery; 2012, p.
353–64. http://dx.doi.org/10.1145/2304576.2304624.

[6] Tan Guangming, Liu Junhong, Li Jiajia. Design and implementation of adaptive
SpMV library for multicore and many-core architecture. ACM Trans Math
Software 2018;44(4). http://dx.doi.org/10.1145/3218823.

[7] Anzt Hartwig, Cojean Terry, Flegar Goran, Göbel Fritz, Grützmacher Thomas,
Nayak Pratik, Ribizel Tobias, Tsai Yuhsiang Mike, Quintana-Ortí Enrique S.
Ginkgo: A modern linear operator algebra framework for high performance
computing. ACM Trans Math Software 2022;48(1):2:1–33. http://dx.doi.org/10.
1145/3480935.

[8] Edwards H Carter, Trott Christian R, Sunderland Daniel. Kokkos: Enabling
manycore performance portability through polymorphic memory access patterns.
J Parallel Distrib Comput 2014;74(12):3202–16. http://dx.doi.org/10.1016/j.
jpdc.2014.07.003, Domain-Specific Languages and High-Level Frameworks for
High-Performance Computing.

[9] Trott Christian R, Lebrun-Grandié Damien, Arndt Daniel, Ciesko Jan, Dang Vinh,
Ellingwood Nathan, Gayatri Rahulkumar, Harvey Evan, Hollman Daisy S,
Ibanez Dan, Liber Nevin, Madsen Jonathan, Miles Jeff, Poliakoff David,
Powell Amy, Rajamanickam Sivasankaran, Simberg Mikael, Sunderland Dan,
Turcksin Bruno, Wilke Jeremiah. Kokkos 3: Programming model extensions
for the exascale era. IEEE Trans Parallel Distrib Syst 2022;33(4):805–17. http:
//dx.doi.org/10.1109/TPDS.2021.3097283.

[10] Stroustrup Bjarne. The C++ programming language. 4th ed. Boston ; Munich
[u.a.]: Addison-Wesley Professional; 2013.

[11] Boisvert Ronald F, Boisvert Ronald F, Remington Karin A. The matrix market
exchange formats: Initial design, vol. 5935, US Department of Commerce,
National Institute of Standards and Technology; 1996.

[12] EPCC. Cirrus UK national tier-2 HPC service. 2020, http://www.cirrus.ac.uk/.
[13] Davis Timothy A, Hu Yifan. The university of florida sparse matrix collec-

tion. ACM Trans Math Software 2011;38(1). http://dx.doi.org/10.1145/2049662.
5

patterns available in science. 2049663.

https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
https://www.archer2.ac.uk
http://dx.doi.org/10.1145/3017994
http://dx.doi.org/10.1109/P3HPC56579.2022.00010
http://dx.doi.org/10.1109/P3HPC56579.2022.00010
http://dx.doi.org/10.1109/P3HPC56579.2022.00010
http://dx.doi.org/10.1145/2331130.2331131
http://dx.doi.org/10.1145/2331130.2331131
http://dx.doi.org/10.1145/2331130.2331131
http://refhub.elsevier.com/S2352-7110(24)00146-8/sb4
http://refhub.elsevier.com/S2352-7110(24)00146-8/sb4
http://refhub.elsevier.com/S2352-7110(24)00146-8/sb4
http://refhub.elsevier.com/S2352-7110(24)00146-8/sb4
http://refhub.elsevier.com/S2352-7110(24)00146-8/sb4
http://dx.doi.org/10.1145/2304576.2304624
http://dx.doi.org/10.1145/3218823
http://dx.doi.org/10.1145/3480935
http://dx.doi.org/10.1145/3480935
http://dx.doi.org/10.1145/3480935
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1109/TPDS.2021.3097283
http://dx.doi.org/10.1109/TPDS.2021.3097283
http://dx.doi.org/10.1109/TPDS.2021.3097283
http://refhub.elsevier.com/S2352-7110(24)00146-8/sb10
http://refhub.elsevier.com/S2352-7110(24)00146-8/sb10
http://refhub.elsevier.com/S2352-7110(24)00146-8/sb10
http://refhub.elsevier.com/S2352-7110(24)00146-8/sb11
http://refhub.elsevier.com/S2352-7110(24)00146-8/sb11
http://refhub.elsevier.com/S2352-7110(24)00146-8/sb11
http://refhub.elsevier.com/S2352-7110(24)00146-8/sb11
http://refhub.elsevier.com/S2352-7110(24)00146-8/sb11
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1145/2049662.2049663


SoftwareX 27 (2024) 101775Christodoulos Stylianou and Michèle Weiland
[14] Owenson AMB, Wright SA, Bunt RA, Ho YK, Street MJ, Jarvis SA. An
unstructured CFD mini-application for the performance prediction of a pro-
duction CFD code. Concurr Comput: Pract Exper 2020;32(10):e5443. http://
dx.doi.org/10.1002/cpe.5443, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.
1002/cpe.5443, e5443 cpe.5443.

[15] Ichimura T, Fujita K, Yamaguchi T, Naruse A, Wells JC, Schulthess TC,
Straatsma TP, Zimmer CJ, Martinasso M, Nakajima K, Hori M, Maddegedara L.
A fast scalable implicit solver for nonlinear time-evolution earthquake city
problem on low-ordered unstructured finite elements with artificial intelligence
and transprecision computing. In: SC18: international conference for high per-
formance computing, networking, storage and analysis. 2018, p. 627–37. http:
//dx.doi.org/10.1109/SC.2018.00052.

[16] Yang Chao, Xue Wei, Fu Haohuan, You Hongtao, Wang Xinliang, Ao Yulong,
Liu Fangfang, Gan Lin, Xu Ping, Wang Lanning, Yang Guangwen, Zheng Weimin.
10M-core scalable fully-implicit solver for nonhydrostatic atmospheric dynamics.
In: SC ’16: Proceedings of the international conference for high performance
computing, networking, storage and analysis. 2016, p. 57–68. http://dx.doi.org/
10.1109/SC.2016.5.

[17] Dongarra Jack, Heroux Michael A, Luszczek Piotr. High-performance conjugate-
gradient benchmark: A new metric for ranking high-performance computing
systems. Int J High Perform Comput Appl 2016;30(1):3–10. http://dx.doi.org/
10.1177/1094342015593158.
6

http://dx.doi.org/10.1002/cpe.5443
http://dx.doi.org/10.1002/cpe.5443
http://dx.doi.org/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5443
http://dx.doi.org/10.1109/SC.2018.00052
http://dx.doi.org/10.1109/SC.2018.00052
http://dx.doi.org/10.1109/SC.2018.00052
http://dx.doi.org/10.1109/SC.2016.5
http://dx.doi.org/10.1109/SC.2016.5
http://dx.doi.org/10.1109/SC.2016.5
http://dx.doi.org/10.1177/1094342015593158
http://dx.doi.org/10.1177/1094342015593158
http://dx.doi.org/10.1177/1094342015593158

	Morpheus: A library for efficient runtime switching of sparse matrix storage formats
	Motivation and significance
	Software description
	Software Architecture
	Containers
	Algorithms
	Backends

	Software Functionalities
	Data Management
	Mirroring
	Host-Device Model
	Abstract Matrix Representation
	Unified Interface for Algorithms Across Containers and Spaces
	Adding New Formats


	Illustrative Examples
	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


