MORPHEUS UNLEASHED: FAST CROSS-PLATFORM ~ “'~*®"
SPMV ON EMERGING ARCHITECTURES

Christodoulos Stylianou, Mark Klaisoongnoen,
Ricardo Jesus, Nick Brown, Michele Weiland

EPCC, The University of Edinburgh

epcc

Introduction

Sparse matrices essential concept in computational science and engineering

Sparse matrix storage formats are different in-memory representations of sparse matrices

Each designed to exploit strengths of the different hardware architectures or sparsity pattern of the
matrix

More than 70 formats have been developed over the years - still no single one performs best
across:

Different sparsity patterns
Different target architectures
Different operations

Most code-bases today still use a single format (CSR)
Adapting the data structure at run-time offers new optimization opportunities

epcc

11 May 2023 cuG 2023 3

Sparse Matrix Storage Formats

0 1 2 3 4

o 1] 2 11
AN 0 O 0 1 1 2 2 2 3 4 4
1 3 4
2 5 6 7 Al 0O 1 3 1 2 1 2 3 3 3 4
3 8
AV 1 2 11 3 4 5 6 7 8 9 10
4 9 10
(a) Dense Matrix (b) COO Representation
DOFF§-1§0§1§3§
avoor 12 11
IRP O 3 5 8 9 11 0340
Ao lo|1]3]1]21|2]|3|3|3]|a4 AR
0810 ;"
AV 1 2 11 3 4 5 6 7 8 9 10 o 10 * =

(c) CSR Representation (d) DIA Representation I epcCcC |

Emerging & Non-traditional Architectures

AArch64 CPUs

Newcomers in the HPC scene

Have already proven competitive against traditional x86 CPUs.

Scalable Vector Extension (SVE) key enabler for high performance
Compiler support often lacking

Field Programmable Gate Arrays (FPGAS)
Allow for hardware reconfiguration tailored to the code
Provide configurable logic components and interconnect
Historically lacking mature development ecosystem
Hardware and software ecosystems have become more capable
FPGAs can now be programmed using High-level Synthesis (HLS) in C/C++

Best performance obtained by reworking the algorithm into a dataflow style

epcc

Motivation

New formats are proposed every time a new architecture emerges
Aim to exploit the new characteristics and features of the new hardware

Switching formats dynamically offers new opportunities for optimisation and increased performance
Adopting a new format can be a tedious process as it requires significant code changes

Libraries offer multiple formats through various abstractions, capable for runtime switching
e.g. PETSc, GINKGO and Morpheus

When it comes to the adoption of new hardware, libraries often require major changes in the interface

e.g. to support a new programming model

Need to ensure software can adapt to the requirements of new hardware architectures

epcc

SpMV on AArch64 CPUs

From an application programmer's perspective there are two main ways of optimising software for
AArch64 targets:

Using target-specific libraries that implement core algorithms and routines efficiently for the targets
Writing efficient code targeting specific CPU (micro-)architectures, usually through intrinsics or assembly

Each of these strategies has its advantages and downsides
Libraries - easy to use as they do not require writing target-specific code explicitly
But limited by the methods and functionality that they offer

Intrinsics (and assembly) - require a far deeper knowledge of the targets' specificities and of the methods being
implemented

But do not pose limitations to what can be implemented

We have explored the usage of these two approaches to augment Morpheus with AArch64-
optimised SpMV routines

The same techniques can be utilised for other targets (e.g. x86)

epcc

SpMV on AArch64 CPUs with ArmPL

The Arm Performance Libraries (ArmPL) are a set of core routines developed by Arm for HPC
applications for AArch64 targets
BLAS, LAPACK, FFT, Sparse, libamath (a subset of libm) and libastring (a subset of libc for strings) routines
For single- and multi-threaded programs provided via both C and Fortran interfaces
Sparse routines support dense, CSR, CSC, COO and BSR matrices via an API (similar to FFTW)
The description of the problem is independent of its execution

Interface for the sparse methods:
armpl spmat create * —create a handle to a sparse matrix
armpl spmat hint — provided to attempt to speedup future SpMV calls

armpl spmv optimize —issue optimisation stage where the library tries to determine the best algorithms and implementations
for the specific matrix and target

armpl * exec * —issue SpMV and other sparse algebra computations
armpl spmat destroy — destroy the handle

Key change in Morpheus: Add a workspace that keeps track of the handles created for each matrix and
use it to issue SpMV calls

epcc

SpMV on AArch64 CPUs with SVE and ACLE (l)

The Scalable Vector Extension (SVE) is one of the most disruptive extensions of the AArch64
architecture for HPC

Vector extension that, unlike other single instruction multiple data (SIMD) extensions such as Neon and the AVX
extensions, is "vector-length-agnostic" (VLA)

In SVE, the length of the vector registers is not known at compile time
This makes the extension highly portable across SVE implementations of varying vector widths
Key HPC and ML features:

Per-lane predication (i.e. control on a per vector element basis)
Gather-loads and scatter-stores
Speculative vectorisation

Horizontal and tree-based reductions

Arm C Language Extensions (ACLE) are a set of compiler intrinsics that aim to:
Expose advanced features of the Arm architecture

Enable the development of applications and libraries portable across compilers and Arm micro-architectures
ACLE can be leveraged to write portable SVE code
epcc

SpMV on AArch64 CPUs with SVE and ACLE (ll)

We have used ACLE to implement SVE-enabled SpMV kernels for COO, CSR and DIA matrices
They result mostly from a transliteration of the "schoolbook" algorithms
We highlight the two main nuances in our implementations for COO and DIA

COO:

Indirection in output vector hinders vectorisation

Addressed by leveraging SVE's predication and reduction
features to work only on element that write to the same

output index

This strategy seems to lead to significant speedups over
compiler generated and ArmPL implementations

1 vbool_t pg;

2 for(i

Pg

;s 1

NNZ; i ventp (pg, pg)) |

vwhilelt (i, NNZ);

vldlsu(pg, ai+i);

svempeq (pg, vai, ail[i]);

vldlsu(pg, ajt+i);
svldl (pg, av+i);

svldl_gather_index(pg, x, vaj);

Inner loop tends to have a short trip count

Therefore, vectorisation is often not advantageous

Vectorised the outer loop instead, leading to:
Better cache utilisation (multiple cache lines can be filled at once)

Avoids horizontal reductions prior to writing to the output vector
ndex (0,

1 vidx_t wvidx
2 for (i

ndiags);

cnt()) {

vtype_t vsum vdup (0) ;

ot e epcc

Porting code on FPGAs

FPGAs provide a very large number of configurable logic components sitting within a sea of
configurable interconnect

Modern FPGAs also contain hardened components: BlockRAM (BRAM), High Bandwidth Memory
(HBM2), DDR, and high-performance networking capabilities

A major challenge with FPGAs: The historically significant time investment required in
programming the technology and need for detailed hardware-level knowledge on behalf of
developers

Recently FPGA hardware and software development ecosystems have become far more capable:
High-Level Synthesis (HLS) toolchains such as Intel’'s Quartus Prime and Xilinx’s Vitis
software developers can now program FPGAs by writing code in C or C++ using HLS

epcc

SpMV on FPGASs (i)

For each supported format (COO, CSR and DIA) we implement a kernel to be loaded on FPGA and
deliver three different bitstreams

Each kernel is a direct transliteration of the original SpMV algorithms for each format
Each bitstream configures the FPGA

Host code to manage data transfers and kernel launching on the FPGA is done using OpenCL

The HLS kernels are set for AMD-Xilinx Alveo U280 FPGA, using the AMD-Xilinx HLS toolchain (Vitis)

Each high-level function follows the host-device model:
Initialise the device in the host code
Create the OpenCL buffers for input/output data
Transfer the required input matrix and vector data on device
Execute the kernel on device
Transfer results back to host

epcc

SpMV on FPGAS (ii)

FPGAs operate fundamentally different from traditional Von-Neumann
architectures and algorithms have to be reworked into a dataflow style.

The dataflow style is built around concurrently running stages (dataflow
stages) that stream data between themselves and each stage comprises

individual pipeline(s).

This approach provides the potential to implement custom optimization
techniques around memory accesses and data transfers, resulting in
lower number of cycles before a result is produced.

An example of such dataflow structure is shown in Figure 1 for COO
kernel:

Purple box: Depict a connection to external high bandwidth memory where all reads and
writes are packed in chunks of 512 bits.

Green box: A separate dataflow region running concurrently
Solid Arrows: Represent the streams of data that flow from one cycle to the next.
Dashed Arrow: Represents a ping-pong buffer (double buffering technique)

One cycle will concurrently write to one buffer whereas the subsequent stage is served with data from a previous copy of
the buffer.

Switch occurs at a predefined point.

XV AV Al AJ
load_dtype_data load_dtype_data load_int_data load_int_data
get_x_values l‘ ‘
mpute_spmv
Ports to HBM
reduce
Dataflow stage
——> HLS Stream H
Y
-======- Ping-pong buffer
stor
Yv |

Figure 1: Separate dataflow region running
concurrently to load the data from HBM2 and
then pass individual data elements to the next
stages, for COO SpMV kernel.

epcc

Integration

Morpheus is a C++ header-only library that:

Provides an abstraction of sparse matrices and allows for efficient dynamic and transparent switching of formats
Currently supports COO, CSR and DIA and can target Serial, OpenMP, CUDA and HIP Backends.

Proposed Arm Optimizations are integrated into existing backends using compile-time flags
ArmPL implementations for COO and CSR
SVE implementations for COO, CSR and DIA.

Integration of new backends poses unique challenges that might require significant development efforts
and changes to the existing interface

FPGAs, from the developer’s perspective, fit in the host-device model as accelerators
Morpheus already supports GPUs as a device: potential for high-level interface to remain unchanged
Integration possible by developing an FPGA execution and memory space to be used by Morpheus.

Challenges in the integration manifested in the low-level implementation of the algorithms:
Bitstream generation
Performance portability across different FPGA devices

epcc

Experimental Setup

For AArch64:

HPE Apollo 80 partition on Isambard (hosted by Bristol)
72 Nodes each with a Fujitsu A64FX processor (48 ARMv8.2 cores and 512-bit SVE)
32GB HBM2 memory.

Compiler: GNU 10.2.0

Flags: -03 -ffast-math -ftree-vectorize -funroll-loops -mcpu=native

For distributed experiments: OpenMPI 4.1.0

For FPGAS:

ExCALIBUR H&ES FPGA testbed (hosted by EPCC in Edinburgh)
Xilinx Alveo U280
32-core AMD EPYC 7502 CPU
256GB DRAM
8GB HBM2 and 32GB DDR DRAM on board.

Xilinx Vitis Version 2021.2

epcc

Evaluation of SpMV on AArch64 CPUs

For each implementation we perform 100 iterations of
SpMV multiplication

Optimal format distribution per version differs significantly
For most matrices in SuiteSparse CSR is optimal

Almost 20% and 40% of matrices better off with COO for
Plain and SVE implementations

DIA almost never used by the Plain version

Vectorization performed by SVE version makes DIA
optimal for 10% of the matrices.

mm COO
CSR
80 - DIA
9
§ 60-
5
Q
ki
[a)
= 401
©
g I
[e]
w
. I
O_J , B ,
PLAIN ARMPL SVE

Version

Figure 2: Distribution of the optimal format for the SpMV multiplication
operation in serial for over 2100 sparse matrices from SuiteSparse
collection on A64FX.

Version Description COO | CSR | DIA

. Original implementations
Plain without any Arm Optimisations v v v

ARMPL | Implementations using ArmPL v v

N X

Implementations using
SVE SVE Extensions v v

Table 1: Versions of each CPU-based SpMV implementation available
in Morpheus along with the formats each version supports.

epcc

11 May 2023

CUG 2023

16

Evaluation of SpMV on AArch64 CPUs

Runtime Ratio Tewr / T9HF (Times))
o

(a) COO

1500

ARMPL
——— ARMPL,y,
SVE

—— SVEay,

Runtime Ratio Tewr / T9F (Times))

1000

Matrix ID

(b) CSR

1500

ARMPL
——— ARMPL,y,
SVE

—— SVEay,

Runtime Ratio Tewr / T9HF (Times))

N

SVE

—— SVEayg

& [} 3 []
o . .
500 1000 1500 2000
Matrix ID
(c) DIA

Figure 3: Serial performance of the SpMV multiplication over 2100 sparse matrices on A64FX for each format w.r.t. the equivalent plain implementation. A ratio above 1 indicates a speedup
over the performance achieved when using the original implementation with the same format. The straight lines represent the average speedup over all matrices for each version.

* No single implementation performs optimally across all matrices.

« Compiler not always capable for auto-vectorizing the sparse kernels.

lepcc|

11 May 2023 CUG 2023 17

Evaluation of SpMV on AArch64 CPUs

. PLAIN . PLAIN
—— PLAIN, g Fi : — PLAINayg
10! . ARMPL 10! - . . ¢ SVE
——— ARMPL,y, N ST olp 3oy 9. ——— SVEay,
2 7 - @ PRI R
A . SVE c s ‘L8 -4 [N .
£ —— SVEay £ A A L M T .
E 190 E 190 o 3o,8 oo, 0, ., e e B2 8o o
5% e e el Fn o ewl L T ikle &, e
a&s is o 90 5 '. v oeslc Teg® ce L J
= = ° ey ¥ o Sa 00 = o,
Z = A) P TR | T EINLY R Ry A
& & N IR Y 3 Y S YUl
I = DR 3 - [BT e XN
-1 | -1 . ‘e - N) .
2 10 g 10 e ¥\) g’&—'-;jt‘—. . 1r§.—
< o N R CF § lale C
g g o o e : Py ° ..
= =
2 1072 2 1072
L]
_ _ .o .%o .
10-3 1071 143 e LI < D
0 500 1000 1500 2000 0 500 1000 1500 2000
Matrix ID Matrix ID
(a) COO (b) DIA

Figure 4: Serial performance of the SpMV multiplication over 2100 sparse matrices on A64FX for each format w.r.t. the equivalent plain CSR implementation. A ratio above 1
indicates a speedup over the performance achieved when using the original CSR implementation. The straight lines represent the average speedup over all matrices for each version.

» For most matrices, plain CSR clearly outperforms other formats and implementations.

« SVE implementations for COO and DIA can offer noticeable speedup to runtime
performance, sometimes by an order of magnitude higher. I o p CC I

11 May 2023 CUG 2023 18

Speedup (Tesg / TEHTF)

Evaluation of SpMV on FPGAs

a5 —— FPGAuyg 175 —— FPGAuyg ——— FPGA-OPTIMISED,,q
FPGA ' . FPGA 16 N N —— FPGA-OPTIMISED-BRAM,,q
.8 . : —— FPGA-REDUCE, g
1.50 . 1.4 . .
. . ~ . . ° - FPGA-OPTIMISED
20 " N 2 . FPGA-OPTIMISED-BRAM
1.25 . E 12 FPGA-REDUCE
RS 34 1 ’ -
IS ‘e s b o o g8 |
15 e 3 1.00 t '! i B o
3 Q . o r . ,_
‘ 0|8 . tg_ Yo < 0.8
. ol 5 0.75 3 .- ¢ 2
. °| ® o -9 .] o e ® +
1.0 e . & . 3 : K 4 2 06
° o . Q ° A o 3
| odacws, &, < s |9 3 0 . e, - ? P <
- .‘ . e b oot 4 . 0.50 - rd . =l
L S R . : s . . S 04
. . o g0 o0) e Z
03 -_P 2’ " R] % . o
Ty g o, :
.4? ‘.. o :"‘ 4
-..4-.0'?" PR T R
0.0]]]]]] | | | | | | oo | |
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 500 1000 1500 2000
Matrix ID Matrix ID Matrix ID
(a) COO SpMV performance against CSR (b) DIA SpMV performance against CSR (c) Optimised COO SpMV

versions against original COO

Figure 5: Serial performance of the SpMV multiplication over 2100 sparse matrices on Alveo U280. A ratio above 1 indicates a speedup over the performance achieved
against a reference implementation. The straight lines represent the average speedup over all matrices for each version.

« 20% of sparse matrices on FPGAs perform optimally with COO and DIA format.

« Speedup less significant compared to CPU equivalents but still room for improvement.

lepcc|

11 May 2023 CUG 2023 19

Comparison with ARM-HPCG

HPCG Impl: 1.15

|
l

HPCG Impl: .
L I .-._.”.. i~ Arm xr mp o .. HPCG Impl:
Morpheus o S N | EXEEES Arm EE e R R B (RO Arm
— .:.. Py “"‘ Morpheus ® { TETTTTEY [T PP R b---@ Morpheus
n on: _ 25) _
g 4 Versmn.. 2 Version: ¢ 1.10 Version:
£ X Plain £ R . - i 1S —_— i
=) £ R O Plain £ Plain
; ® SVE =S : . —— SVE = — SVE
5 520 8
85 . 4 ArmPL % \ ArmPL % ~—— ArmPL
S Z ~ 1.05 — o
g Format: 8 9 - — 8
S - CsR g 1s = S [T R
Z, —— CO00 2 g
2 % — DA L P 2
o) .'.‘. > |) 1.00
_g Y e g 1.0 1 O €
£ £ =]
31 z é
0.5
0.95
0 Py | —&—7
16-16-16 32-32-32 64-64-64 128-128-128 256-256-256 0.0 1 2 3 4 0 5 10 15 20 25 30
Local Problem Size Number of Nodes Number of Nodes
(a) Serial Performance (b) Strong Scaling (c) Weak Scaling

Figure 6: Performance of the Morpheus- and Arm-enabled HPCG implementations. The performance is measured as the SpMV runtime ratio of the reference HPCG w.r.t
each optimal HPCG implementation and version on A64FX. A ratio above 1 indicates a speedup over the performance achieved when using the original HPCG.

Serial Performance matches the observed performance from Figures 3 and 4 with
Morpheus-enabled HPCG outperforming Arm-enabled HPCG (vendor implementation).

Both strong and weak scaling performance of Morpheus-enabled HPCG closely tracks the
performance of the optimal SVE version of the Arm-enabled HPCG. I e p CC I

Conclusions

In this work, we explore the suitability of storage formats such as COO, CSR and DIA for emerging and
non-traditional architectures, such as AArch64 CPUs and FPGAs.

In addition, we detail hardware-specific optimisations to Aarch64 CPUs and evaluate the potential of
each contribution to be integrated into Morpheus.

Our findings for AArch64 CPUs show that no single format performs best, but also motivate the adoption
of a dynamic selection mechanism for selecting the optimal algorithm for each format, since different
optimizations can work best to different matrices.

Furthermore, the adoption of SVE can significantly improve performance whenever the compiler
struggles to auto-vectorize sparse kernels (e.g. COO and DIA SpMV).

For the FPGAs, our naive implementations showed similar optimal format distribution as their CPU
equivalents, although on average performance was inferior.

Optimizing these implementations to use the dataflow style and also the available resources on the FPGA efficiently is an avenue of
further work.

New optimizations can be easily integrated and co-exist in Morpheus.

It is possible to extend Morpheus to include new backends such as FPGAs, without any changes to the

existing interface.
epcc

