
MORPHEUS UNLEASHED: FAST CROSS-PLATFORM
SPMV ON EMERGING ARCHITECTURES

Christodoulos Stylianou, Mark Klaisoongnoen, 
Ricardo Jesus, Nick Brown, Michèle Weiland
EPCC, The University of Edinburgh

11 May 2023 1CUG 2023



Introduction

• Sparse matrices essential concept in computational science and engineering

• Sparse matrix storage formats are different in-memory representations of sparse matrices
• Each designed to exploit strengths of the different hardware architectures or sparsity pattern of the 

matrix

• More than 70 formats have been developed over the years - still no single one performs best 
across:
• Different sparsity patterns
• Different target architectures
• Different operations

• Most code-bases today still use a single format (CSR)
• Adapting the data structure at run-time offers new optimization opportunities

11 May 2023 CUG 2023 2



Sparse Matrix Storage Formats

4

3

2

1

0

0 1 2 3 4

1 2 11

3 4

5 6 7

8

9 10

11 May 2023 CUG 2023 3

AV 1 2 11 3 4 5 6 7 8 9 10

0 1 3 1 2 1 2 3 3 3 4

0 0 0 1 1 2 2 2 3 4 4

AJ

AI

AV 1 2 11 3 4 5 6 7 8 9 10

0 1 3 1 2 1 2 3 3 3 4

0 3 5 8 9 11

AJ

IRP

-1 0 1 3

* 1 2 11

0 3 4 0

5 6 7 *

0 8 0 *

9 10 * *

DOFF

AV

(a) Dense Matrix (b) COO Representation

(c) CSR Representation (d) DIA Representation



Emerging & Non-traditional Architectures

1. AArch64 CPUs
• Newcomers in the HPC scene
• Have already proven competitive against traditional x86 CPUs.
• Scalable Vector Extension (SVE) key enabler for high performance

• Compiler support often lacking

2. Field Programmable Gate Arrays (FPGAs)
• Allow for hardware reconfiguration tailored to the code

• Provide configurable logic components and interconnect
• Historically lacking mature development ecosystem

• Hardware and software ecosystems have become more capable
• FPGAs can now be programmed using High-level Synthesis (HLS) in C/C++

• Best performance obtained by reworking the algorithm into a dataflow style

11 May 2023 CUG 2023 4



Motivation

• New formats are proposed every time a new architecture emerges
• Aim to exploit the new characteristics and features of the new hardware

• Switching formats dynamically offers new opportunities for optimisation and increased performance

• Adopting a new format can be a tedious process as it requires significant code changes

• Libraries offer multiple formats through various abstractions, capable for runtime switching
• e.g. PETSc, GINKGO and Morpheus

• When it comes to the adoption of new hardware, libraries often require major changes in the interface
• e.g. to support a new programming model

• Need to ensure software can adapt to the requirements of new hardware architectures

11 May 2023 CUG 2023 5



SpMV on AArch64 CPUs

• From an application programmer's perspective there are two main ways of optimising software for 
AArch64 targets:
• Using target-specific libraries that implement core algorithms and routines efficiently for the targets
• Writing efficient code targeting specific CPU (micro-)architectures, usually through intrinsics or assembly

• Each of these strategies has its advantages and downsides
• Librariesà easy to use as they do not require writing target-specific code explicitly

• But limited by the methods and functionality that they offer

• Intrinsics (and assembly) à require a far deeper knowledge of the targets' specificities and of the methods being 
implemented
• But do not pose limitations to what can be implemented

• We have explored the usage of these two approaches to augment Morpheus with AArch64-
optimised SpMV routines
• The same techniques can be utilised for other targets (e.g. x86)

11 May 2023 CUG 2023 6



SpMV on AArch64 CPUs with ArmPL

• The Arm Performance Libraries (ArmPL) are a set of core routines developed by Arm for HPC 
applications for AArch64 targets
• BLAS, LAPACK, FFT, Sparse, libamath (a subset of libm) and libastring (a subset of libc for strings) routines 

• For single- and multi-threaded programs provided via both C and Fortran interfaces
• Sparse routines support dense, CSR, CSC, COO and BSR matrices via an API (similar to FFTW)

• The description of the problem is independent of its execution

• Interface for the sparse methods:
• armpl_spmat_create_* – create a handle to a sparse matrix
• armpl_spmat_hint – provided to attempt to speedup future SpMV calls
• armpl_spmv_optimize – issue optimisation stage where the library tries to determine the best algorithms and implementations 

for the specific matrix and target
• armpl_*_exec_* – issue SpMV and other sparse algebra computations
• armpl_spmat_destroy – destroy the handle

• Key change in Morpheus: Add a workspace that keeps track of the handles created for each matrix and 
use it to issue SpMV calls

11 May 2023 CUG 2023 7



SpMV on AArch64 CPUs with SVE and ACLE (I)

• The Scalable Vector Extension (SVE) is one of the most disruptive extensions of the AArch64 
architecture for HPC
• Vector extension that, unlike other single instruction multiple data (SIMD) extensions such as Neon and the AVX 

extensions, is "vector-length-agnostic" (VLA)
• In SVE, the length of the vector registers is not known at compile time
• This makes the extension highly portable across SVE implementations of varying vector widths
• Key HPC and ML features:

• Per-lane predication (i.e. control on a per vector element basis)
• Gather-loads and scatter-stores
• Speculative vectorisation
• Horizontal and tree-based reductions

• Arm C Language Extensions (ACLE) are a set of compiler intrinsics that aim to:
• Expose advanced features of the Arm architecture
• Enable the development of applications and libraries portable across compilers and Arm micro-architectures
• ACLE can be leveraged to write portable SVE code

11 May 2023 CUG 2023 8



SpMV on AArch64 CPUs with SVE and ACLE (II)
• We have used ACLE to implement SVE-enabled SpMV kernels for COO, CSR and DIA matrices

• They result mostly from a transliteration of the "schoolbook" algorithms
• We highlight the two main nuances in our implementations for COO and DIA

11 May 2023 CUG 2023 9

• COO:
• Indirection in output vector hinders vectorisation

• Addressed by leveraging SVE's predication and reduction 
features to work only on element that write to the same 
output index

• This strategy seems to lead to significant speedups over 
compiler generated and ArmPL implementations

• DIA:
• Inner loop tends to have a short trip count

• Therefore, vectorisation is often not advantageous

• Vectorised the outer loop instead, leading to:
• Better cache utilisation (multiple cache lines can be filled at once)

• Avoids horizontal reductions prior to writing to the output vector



Porting code on FPGAs

11 May 2023

• FPGAs provide a very large number of configurable logic components sitting within a sea of 
configurable interconnect

• Modern FPGAs also contain hardened components: BlockRAM (BRAM), High Bandwidth Memory 
(HBM2), DDR, and high-performance networking capabilities

• A major challenge with FPGAs: The historically significant time investment required in 
programming the technology and need for detailed hardware-level knowledge on behalf of 
developers

• Recently FPGA hardware and software development ecosystems have become far more capable:
• High-Level Synthesis (HLS) toolchains such as Intel’s Quartus Prime and Xilinx’s Vitis
• software developers can now program FPGAs by writing code in C or C++ using HLS

Programming FPGAs is now becoming more a question 
of software development than hardware design

CUG 2023 10



SpMV on FPGAs (i)

11 May 2023 CUG 2023 11

• For each supported format (COO, CSR and DIA) we implement a kernel to be loaded on FPGA and 
deliver three different bitstreams

• Each kernel is a direct transliteration of the original SpMV algorithms for each format

• Each bitstream configures the FPGA

• Host code to manage data transfers and kernel launching on the FPGA is done using OpenCL

• The HLS kernels are set for AMD-Xilinx Alveo U280 FPGA, using the AMD-Xilinx HLS toolchain (Vitis)

• Each high-level function follows the host-device model:
1. Initialise the device in the host code
2. Create the OpenCL buffers for input/output data
3. Transfer the required input matrix and vector data on device
4. Execute the kernel on device
5. Transfer results back to host



SpMV on FPGAs (ii)

11 May 2023 CUG 2023 12

• FPGAs operate fundamentally different from traditional Von-Neumann 
architectures and algorithms have to be reworked into a dataflow style.

• The dataflow style is built around concurrently running stages (dataflow 
stages) that stream data between themselves and each stage comprises 
individual pipeline(s).

• This approach provides the potential to implement custom optimization 
techniques around memory accesses and data transfers, resulting in 
lower number of cycles before a result is produced.

• An example of such dataflow structure is shown in Figure 1 for COO 
kernel:

• Purple box: Depict a connection to external high bandwidth memory where all reads and 
writes are packed in chunks of 512 bits.

• Green box: A separate dataflow region running concurrently
• Solid Arrows: Represent the streams of data that flow from one cycle to the next.
• Dashed Arrow: Represents a ping-pong buffer (double buffering technique)

• One cycle will concurrently write to one buffer whereas the subsequent stage is served with data from a previous copy of 
the buffer.

• Switch occurs at a predefined point.

Figure 1: Separate dataflow region running 
concurrently to load the data from HBM2 and 
then pass individual data elements to the next 
stages, for COO SpMV kernel.



Integration
• Morpheus is a C++ header-only library that:

• Provides an abstraction of sparse matrices and allows for efficient dynamic and transparent switching of formats
• Currently supports COO, CSR and DIA and can target Serial, OpenMP, CUDA and HIP Backends.

• Proposed Arm Optimizations are integrated into existing backends using compile-time flags
• ArmPL implementations for COO and CSR
• SVE implementations for COO, CSR and DIA.

• Integration of new backends poses unique challenges that might require significant development efforts
• and changes to the existing interface

• FPGAs, from the developer’s perspective, fit in the host-device model as accelerators
• Morpheus already supports GPUs as a device: potential for high-level interface to remain unchanged
• Integration possible by developing an FPGA execution and memory space to be used by Morpheus.

• Challenges in the integration manifested in the low-level implementation of the algorithms:
• Bitstream generation
• Performance portability across different FPGA devices

11 May 2023 CUG 2023 13



Experimental Setup

• For AArch64:
• HPE Apollo 80 partition on Isambard (hosted by Bristol)

• 72 Nodes each with a Fujitsu A64FX processor (48 ARMv8.2 cores and 512-bit SVE)
• 32GB HBM2 memory.

• Compiler: GNU 10.2.0
• Flags: -O3 -ffast-math -ftree-vectorize -funroll-loops -mcpu=native 
• For distributed experiments: OpenMPI 4.1.0

• For FPGAs:
• ExCALIBUR H&ES FPGA testbed (hosted by EPCC in Edinburgh)

• Xilinx Alveo U280
• 32-core AMD EPYC 7502 CPU

• 256GB DRAM
• 8GB HBM2 and 32GB DDR DRAM on board.

• Xilinx Vitis Version 2021.2

11 May 2023 CUG 2023 14



Evaluation of SpMV on AArch64 CPUs

VII. RESULTS AND EVALUATION

A. Setup

All experiments targeting AArch64 CPUs were carried out
on the Bristol-based HPE Apollo 80 partition of Isambard [32].
Each of the 72 nodes on the cabinet has a Fujitsu A64FX
Processor with 48 ARMv8.2 cores and 512-bit SVE, running
at the clock frequency of 1.8GHz, and 32GB HBM2 memory
arranged in 4 core memory groups.

Each experiment was compiled with GNU 10.2.0 using -O3
-ffast-math -ftree-vectorize -funroll-loops

-mcpu=native compiler flags. For the distributed experi-
ments OpenMPI 4.1.0 was also used.

For the FPGA runs reported in this paper we use a Xil-
inx Alveo U280, running at the default clock frequency of
300MHz, which contains an FPGA chip with 1.08 million
LUTs, 4.5MB of on-chip BRAM, 30MB of on-chip Ultra-
RAM, and 9024 DSP slices. This PCIe card also contains
8GB of HBM2 and 32GB of DDR DRAM on the board.

The FPGA card is hosted in the ExCALIBUR H&ES FPGA
testbed3 system with a 32-core AMD EPYC 7502 CPU with
256GB DRAM . All bitstreams are built for the U280 using
Xilinx’s Vitis framework version 2021.2.All reported results
are averaged over ten runs and FPGA run-time includes
on-device execution time exclusive device setup time and
excluding data transfer times.

B. Evaluation of SpMV on AArch64 CPUs

In order to evaluate the performance of the newly added
SpMV implementations for AArch64 CPUs in Morpheus,
for each implementation we perform 100 iterations of the
SpMV multiplication over 2106 sparse matrices available in
SuiteSparse [7] collection. Each run is executed in Serial on
a Fujitsu A64FX Processor, as described in Section VII-A.
The implementations are divided in three versions as shown
in Table II, along with a short description and the supported
formats for each.

TABLE II: Versions of each CPU-based SpMV implementa-
tion available in Morpheus along with the formats each version
supports.

Version Description COO CSR DIA

Plain Original implementations X X Xwithout any Arm Optimisations
ARMPL Implementations using ArmPL X X ⇥

SVE Implementations using X X XSVE Extensions

The optimal format distribution per version differs signifi-
cantly, as shown in Figure 3. For most of the matrices in the
SuiteSparse collection the optimal format is CSR, validating
its role as the most commonly used storage format. However,
almost 20% and 40% of the matrices are better with COO
in the Plain and SVE versions respectively. Interestingly,

3ExCALIBUR H&ES FPGA testbed, Field Programmable Gate Arrays
(FPGAs) for accelerating scientific and data-science codes: https://fpga.epcc.
ed.ac.uk/

Fig. 3: Distribution of the optimal format for the SpMV multi-
plication operation in serial for over 2100 sparse matrices from
SuiteSparse collection on A64FX. Distributions are shown for
each version of the algorithm.

although DIA format is almost of no use for Plain version, the
vectorization performed by SVE version makes DIA format
optimal for 10% of the matrices. This indicates that the
vectorization performed by the compiler for DIA in Plain
version might not be as effective as the use of custom SVE
extensions in the SVE version. The main takeaway here is
that for the same hardware, operation and set of matrices in
the majority of times the optimal performance is given by
CSR, although the distribution of the optimal format can vary
significantly given a different implementation or by applying
different optimisations.

Figure 4 shows the single-core performance of the SpMV
multiplication for over 2100 sparse matrices from SuiteSparse
collection on the A64FX processor. For each format, the
runtime of the Plain version SpMV is compared against the
runtime of each optimized SpMV version (ARMPL and SVE)
using the same format. For COO (Figure 4a), ARMPL SpMV
implementation performs at par with the Plain COO SpMV
implementation whilst SVE implementation consistently out-
performs it, obtaining average speedups of 1⇥ and 3.6⇥
respectively. The increase in performance achieved by the
SVE version can be attributed in assumptions made during
the implementation of the SpMV algorithm that allowed us to
take advantage of different intrinsic commands. For example,
by assuming that the matrix is sorted (which Morpheus ensures
prior to applying any SpMV operation) a tree-based reduction
was used instead of the traditional left-to-right reduction
in order to accumulate the results in the output vector y.
It is worth highlighting that even-though the SVE version
significantly outperforms the Plain version for most of the
matrices in COO, there is still a noticeable number of matrices
for which it significantly under-performs. For very sparse and
unstructured matrices, SVE version seems to introduce more
overheads from the vectorization process effectively hindering
the performance of SpMV. For CSR (Figure 4b), the average
runtime performance for both ARMPL and SVE versions is at
par with Plain. Interestingly, for a large number of matrices

11 May 2023 CUG 2023 15

Figure 2: Distribution of the optimal format for the SpMV multiplication 
operation in serial for over 2100 sparse matrices from SuiteSparse
collection on A64FX.

Table 1: Versions of each CPU-based SpMV implementation available 
in Morpheus along with the formats each version supports. 

• For each implementation we perform 100 iterations of 
SpMV multiplication

• Optimal format distribution per version differs significantly

• For most matrices in SuiteSparse CSR is optimal

• Almost 20% and 40% of matrices better off with COO for 
Plain and SVE implementations

• DIA almost never used by the Plain version

• Vectorization performed by SVE version makes DIA 
optimal for 10% of the matrices.

For the same hardware, operation and set of matrices, in the majority 
of cases CSR is optimal. Distribution of the optimal format can vary 

significantly given a different implementation or different 
optimizations.



Evaluation of SpMV on AArch64 CPUs

11 May 2023 CUG 2023 16

(a) COO (b) CSR (c) DIA

Figure 3: Serial performance of the SpMV multiplication over 2100 sparse matrices on A64FX for each format w.r.t. the equivalent plain implementation. A ratio above 1 indicates a speedup 
over the performance achieved when using the original implementation with the same format. The straight lines represent the average speedup over all matrices for each version. 

• No single implementation performs optimally across all matrices.

• Compiler not always capable for auto-vectorizing the sparse kernels.



Evaluation of SpMV on AArch64 CPUs

11 May 2023 CUG 2023 17

(a) COO (b) DIA

Figure 4: Serial performance of the SpMV multiplication over 2100 sparse matrices on A64FX for each format w.r.t. the equivalent plain CSR implementation. A ratio above 1 
indicates a speedup over the performance achieved when using the original CSR implementation. The straight lines represent the average speedup over all matrices for each version. 

• For most matrices, plain CSR clearly outperforms other formats and implementations.

• SVE implementations for COO and DIA can offer noticeable speedup to runtime 
performance, sometimes by an order of magnitude higher.



Evaluation of SpMV on FPGAs

11 May 2023 CUG 2023 18

(a) COO SpMV performance against CSR (b) DIA SpMV performance against CSR (c) Optimised COO SpMV 
versions against original COO

Figure 5: Serial performance of the SpMV multiplication over 2100 sparse matrices on Alveo U280. A ratio above 1 indicates a speedup over the performance achieved 
against a reference implementation. The straight lines represent the average speedup over all matrices for each version. 

• 20% of sparse matrices on FPGAs perform optimally with COO and DIA format.

• Speedup less significant compared to CPU equivalents but still room for improvement.



Comparison with ARM-HPCG

11 May 2023 CUG 2023 19

(a) Serial Performance (b) Strong Scaling (c) Weak Scaling

Figure 6: Performance of the Morpheus- and Arm-enabled HPCG implementations. The performance is measured as the SpMV runtime ratio of the reference HPCG w.r.t
each optimal HPCG implementation and version on A64FX. A ratio above 1 indicates a speedup over the performance achieved when using the original HPCG. 

• Serial Performance matches the observed performance from Figures 3 and 4 with 
Morpheus-enabled HPCG outperforming Arm-enabled HPCG (vendor implementation).

• Both strong and weak scaling performance of Morpheus-enabled HPCG closely tracks the 
performance of the optimal SVE version of the Arm-enabled HPCG.



Conclusions

• In this work, we explore the suitability of storage formats such as COO, CSR and DIA for emerging and 
non-traditional architectures, such as AArch64 CPUs and FPGAs.

• In addition, we detail hardware-specific optimisations to Aarch64 CPUs and evaluate the potential of 
each contribution to be integrated into Morpheus.

• Our findings for AArch64 CPUs show that no single format performs best, but also motivate the adoption 
of a dynamic selection mechanism for selecting the optimal algorithm for each format, since different 
optimizations can work best to different matrices.

• Furthermore, the adoption of SVE can significantly improve performance whenever the compiler 
struggles to auto-vectorize sparse kernels (e.g. COO and DIA SpMV).

• For the FPGAs, our naïve implementations showed similar optimal format distribution as their CPU 
equivalents, although on average performance was inferior.

• Optimizing these implementations to use the dataflow style and also the available resources on the FPGA efficiently is an avenue of 
further work.

• New optimizations can be easily integrated and co-exist in Morpheus.

• It is possible to extend Morpheus to include new backends such as FPGAs, without any changes to the 
existing interface.

11 May 2023 CUG 2023 20


